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Abstract

It is shown that the error corresponding to certain spline collocation approxi-
mations for nonlinear Volterra integral equations of the second kind is the solution
of a nonlinearly perturbed linear Volterra integral equation. On the basis of this
result it is possible to derive general estimates for the order of convergence of the
spline solution at the underlying mesh points. Extensions of these technmiques to

other types of Volterra equations are indicated.
#

§1. Introduction

Consider the nonlinear Volterra integral equation of the second kind

Y0 =g+ [ Ko ueds, teT=(0,T) (1.1)

where g: I —» Rand k: S x R— R (with §:={(t,8):0<s <1< T}) denote given
continuous functions, which are assumed to be such that (1.1) has a unique solution
y € C(I). Suppose that u: I — Ris an approximation to y satisfying

ly — ulloo == sup{ly(t) — u(t)| : t € I} =o(h") p>0, (1.2)
as h — 0. Here, h = RN} is the diameter of the underlying mesh IIxy : 0 = #p <
t; < - <ty =T (with t, = tLN)_): h:=max{tpy; —tn: 0£ 0 < N —1}. Often u
converges faster to y on the mesh Iy than on I, iL.e. there exists a p* > p so that

max {|y(?) — u(t)| : t € In} = &(hp'). (1.3)

We then say that u exhibits discrete (or local) superconvergence of order P* at the
mesh points. |

This paper is concerned with the following question: assuming that we have es-
tablished a global convergence result of the form (1.2), how can we verify if the ap-
proximation » (obtained, e.g., by collocation in some finite-dimensional function space)
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where

Ok(t,s,y)
0y

A(t,s8) :=

y=y(s).

and
(Be)(t) := 2 | a%gy — - €%(s)ds,

y=w(a)

with w(s) := y(s) + 8(s)e(s) for some § € (—1,0).
Proof. 1t follows from (1.1) and (2.7) that e(?) satisfies

e(t) = (1) + / (k(2, 8, y(s)) — k(t,8,u(s))}ds, te€I

The integrand can be written as

dk(2,s,y)

k(t,s,y(s)) — k(tr 3, y{3) — e(3)) = k(1, s, y(s))_ B by e(s)
1 0%k(t, s, y) |
* 5_ dy? y=w(s) | Ez(ﬂ)‘

where, by Taylor s formula, w(s) := y(s)+8(s)e(s), with —1 < @ < 0. This yields (2.8).
In an a.nalogous way we obtain an expression for e;,(1) : +y(t) — ui(2).
Lemma 2.2. The iterated collocation error e;(t) corresponding to the iterated

collocation solution uy(l) given by (2.3) is related to e(t) by
- t
eill) = f A(t, s)e(s)ds + (Be)(t), tel, (2.9)
0

 with A(t,s) and (Be)(t) as in Lemma 2.1. |
Lemma 2.3. Let R(t,s) be the solution of the resolvent equation

R(t,8) = —A(t,s) + _/t A(t, v)R(v,s)dv, (2,8) €S, (2.10)

where the kernel A(1,s) has been introduced in Lemma 2.1. Then ¢(t) solves the non-
linearly perturbed linear Volterra integral equation (2.8) if, and only if, it satisfies

e(t) = r(t) — _[: R(t,s)r(s)ds + (Be)(?) — /; R(t,s)(Be)(.s)ds, tel. (2.11)

Proof. Setting F(t) := r(t) + (Be)(t) it follows from the classical Volterra theory
(compare also [8,pp. 189-193]) that the solution of

e(t) = F(t) + '[:-A(t,s)e(s')ds, tel,
is given by '
’ Ceft) = F(t) + f R(t,s)F(s)ds, t€l,

where the resolvent kernel R(t, 8) associated with A(t,s) is defined by (2. 10) This
yields (2.11). Obvmuﬁly, the above steps are reversible. .
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Lemma 2.4. The iterated collocation error can be ezpressed in the form

calt) = = [ R(t,s)r(s)ds + (Be)(t) - | 'R, (Bess el (212)

Proof. 1f we replace e(s) in (2.9) by the expression (2.11), we obtain
et = f; A(t, s) {r(s) - [: R(s,v)r(v)dv + (Be)(s)
— j: R(s,v)(Be)(ﬂ)d;J} ds + (Be)(t).

The resulting double integrals can be simplified by means of the resolvent equation
(2.10), e.g.,

.[: (./0’ A(t,S)R(-S, v)r(v)) dsg = 'E (j: A(t,s)R(s, v)ds) r(v)dv
- [ At 9+ R,

and hence (2.12) is readily verified.

The results of Lemma 2.3 and Lemma 2.4 are the keys to answering the question
about discrete supercBnvergence on Ily. Consider first (2.11) with 2 = i, (I<n<N).
We write it as

e(tn) = r(tn) — ﬂi h,; /01 Qn(ti + vh;)dv + (Be)(tn) — j;n R(t,,s)(Be)(s)ds,

1=0
where we have set
Qn(t; + vh;) := R(tn,ti + vhi)r(t; +vhi), i< n.
Let

1 m
: ./0 Qn(ti + ﬂhi)dﬂ — E kan(t;‘ 4 C];h;') + En,h
k=1

where

] ™m
Wi = / Li(s)ds, Li(s):=[l(s—¢)/(ck—¢j), k=1,--,m
0 :

JEk
are the weights of the m-point interpolatory quadrature formula based on the abscissas
t; + cxh; (i.e. the collocation points ¢;;) and where En; denotes the corresponding
quadrature error. Due to the factor r(t; + vhi), Qn(t: + vh;) vanishes for v = ¢, and
hence we obtain | |

n-=1

in

e(tn) = r(tn) — E hiE,;: + (Be)(i.) — j R(t,,s)(Be)(s)dsn = 1,---,N. (2.13)
=0 0 .

(Note that if the given integral equation (1.1) is linear, i.e., if k(2,s,y) = K(Z,3)y, then

we have (Be)(t) = 0 and (2.13) reduces the expression derived in (2].)
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Since by assumption the kernel A(t,s) in (2.8) is continuous on .S' the resolvent
R(t,s) (cf.(2.10)) has the same property Hence,

/ r(t,s)ds <_L'
for some finite constant My, and (2.13) leads to the estimate
le(t=)l < |r(ta)| + Nb -sup{|Epn;: 0<i<n< N} 4 ||Bellingey - (1 + Mo),

n=1,---,N, (2.14).

./ [R(t,8)lds < Mo, tel,
0

where Nh < 4T for some constant 4 > 1 characterizing the underlying quasi-uniform
mesh sequence {IIx}. |

Comparison of (2.12) with (2.11) reveals that an almost identical estimate holds for
the iterated collocation error:

leit(ta)]l < Nh-sup{|E.;|: 0<i<n< N}+||Bellingy - (1 + Mp),

n=1,---,N. (2.15)

We observe that, except for the term r(t,) in (2.14), the orders of e(t,) and e;(t,)
depend on those of the quadrature errors E, ; and the norms of the perturbation term
(Be)(t). The &rder of E,; is governed by the choice of the parameters {ex}. Since the
orthogonality condition (2.4) implies that an m-point interpolatory quadrature formula
based on the abscissas {; + crh;} has degree of precision m + d < 2m, it follows from
Peano’s theorem (see, e.g., [7] or [6, pp. 285-290]) that

|Eni] < ChR™FE, 0<i<n<N (2.16)

for sufficiently smooth integrands Q,(t; + vh;).

In order to estimate ||Be¢||o, recall Lemma 2.1: assuming that |0%k(t, s, y)/0y?] is
bounded by some constant K in a suitable region containing D := {(t,s,y(s)): 0 <
s <t < T} (where y(s) is the analytical solution of (1.1)), we find

1

SKaTllel%, = o(llel%).

It is known (see [4]) that for sufficiently smooth data g and # in (1.1) the collocation
error € behaves globally (i.e. on I) like |l¢||oo = ¢(A™). Hence,

| Belloo = a(h*™), (2.17)

IBello <

as b — 0 (with Nk < 47).

~ We are now ready to derive the results of Theorem 2.1.

(a) For ¢, = 1 we have t,, € X(N), and hence r({,) = 0(n = 1,---,N). By (2.16)
and (2.17) it follows from (2.14) that _

|  max{le(t)|: 1< n < N} =o(h™*) with 0< d < m.

It was shown in [2] that if ¢, is not a collocation point, then, in general, we only have
r(tn) = o(h™). Thus, for cm <1, t, ¢ X(N), 1mplymg (2.5b) This holds in particular
if {c;} are the Gauss points in (0,1).
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(b) Proposition (2.6) follows immediately from ('2.15),(2.15)- sl (2.17):'. we ilave k E
ma'x{‘eﬂ(t)l R | E n g N} o a'(hm'*'d)’ 0 S d S m, :

whether ¢m = 1 or cm < 1. ‘This concludes the proof of Theorem 2.1. |
The optimal value for d in (2.5a),d = m—1,1s attained if, and only if, the collocation
parameters {c;} are the zeros of Pn(28—1)— Po_1(2s — 1) (with P,. denoting the
Legendre polynomial of degree m), i.e. the Radau 11 points. In (2.6) the optimal value
of d is d = m; it is attained if, and only if, {c;} are the zeros of Pn{23 — 1), i.e. the
Gauss points for (0,1). |

§3. Extensions to Other Volterra Equations

In this section we shall indicate, by means of a ¥ — th order Volterra integral differ-
ential equation (VIDE), how the techniques introduced in Section 2 can be extended
to other types of nonlinear Volterra functional equations. Consider the initial-value
problem |

i
PO = S0 OO [ HE Uy (i LEL

yU)(U) = y{(}j) (.7 = 0,-- 9 VvV — 1)1 (31)
where v > 1. Assume that we solve (3.1) by collocation in the spline space
53, (Ty):={u € C¥I): tlo, =:tn € Mpye (0 RSN —1),

where g : v — 1 (compare also (3] for the linear version of (3.1)). Since we have
dim S'9 (Tix) = Nm + Vs the set of collocation points; X(NV ), will be as in (2.2).

m+- v

Writing the collocation equation for 4 € S,(:l (1) in the form
£ .
¥ (2) = £(3,u(t), - -, u (@) — () + f k(t, s, u(s), -+ u)(s))ds, tET, (3.2)
0

with «U)(0) = y{uj) (j = 0,---,q) and with the residual function r(t) vanishing on the
set X(N), it follows from (3.1) and (3.2) that the collocation error e(t) : = y(t) — u(t)
solves

e)(t) = f(t,y(1), -y — fEult) a1 (2)) + r(?)

i
+ _[0 {k(tisl y(3)1 S y(")(s)) s k(t,s, 11(8), e ru(p)(s))}ds! 1€ I‘l (3'3)
with e_(j)({l) = lO(j =0,+*,q) Since & = y — €, we may write
f(t! y(t): * RS y(uﬂl)(t)) o f(t,tl(t), el “(F_I)(t))

v—1

S Dt e V@) - )

3=0

1 tr—1 v—1

+ 155 Dibssm(e) i) - <OOLO

=0 =0




On Discrete Superconvergence Prupertieshuf Spline Collocation Methods ... 355
(where, for f = f(t, 20,4 20-1)y Di:= d/0z;), and
k(t! 3, y(&), ST y(u](s)) e k(tr 3, ‘H(S), 2 g u[u){s))

v—1 P& -
= =Y Dik(t,8,y(s), - ,4)()) - e} (s)
i=0 §
u—l vr—1
+ 53 3 DiDik(t,s,u0(s), -+ wn(s) - € (s)el(s)
i=0 =0
(where, for k = k(t,8,20,**+,2,), Di:8/0z). Here, the functions v; and w; are given |

by the respective Taylor remzunder terms. Intrﬂduclng the functmns

pi(t) := D; f(t, y(t), - ,y‘“ D) G=0,-,v 1)

and -
Ki(t,s) :i= Dik(t,3,9(3), -+, 4*Ns)) (i=0,---,v),

as well as the functional

(ﬂﬁ)(t) g e HZ_: i D; D f(t vg(t), val(t)) ’ E(E)(t)e[j](t)
— -—Z E D;D; k(t s, wo(8), - ,m,(,g)) el (8)el) (s)ds,

we can rewrite {3.3) in the form

v—1

e)(t) = 3 pi)e)(t) + (1) + j }:K (t,s)e(s)ds + (Be)(t), tel, (3.4)
1=0 t=0
with |
ed)(0)=0 (j=0,-,v—-1).
Let z: I — RY*! have components 2;(1) := f:(‘](t) (i = .+,v). We then have, due
to the above initial conditions,
.. zi(t) T ./t zi+1(3)d3 ("" =0, v - 1)! (353‘)
0
~ and hence, by (3.4)
- -1
(1) = 3 pilt) - [ zip1(8)ds + 7(1) + j EK (t, s)ziﬂ(s)ds + (Be)(1),
s=—=0 . :
|  tel. (3.5b)

The above equations (3.5a)-(3.5b) represent a siréfem of v4°1 Volterra integral equations
of the semnd kmd far the cnmponents of z(t) Settmg

D(t) 1= (0,++,0,r(t))T € R,
(Bz)(t) = (0,--,0,(Be)(®))" € R+l



356 | | | HERMANN BRUNNER

and
D 1 0
: 0 ‘ :
A(t,s) = E : i 2 '
0 - 0 1

Kolt,s) po(t)+ Ki(t,8) -~ pu_1(t) + K, (t,3)

this system assumes the form

2(1) = D)+ [ Alt,8)s(s)ds +(BA)0), teEL (36)

We observe that (3.6) is the anélogue of the nonlinearly perturbed linear antle;;;.
integral equation (2.8). Thus, if R(, 8) is the resolvent associated with the matrix -
kernel A(t,$) in (3.6), i.e. the solution of the resolvent equation

R(t,9) = ~AG,0)+ [ AR, )0, (t,5) €S,

then the solution of (3.6) must satisfy

2(t) = D(t) — fﬁ " R(t,s)D(s)ds + (B2)(t) - jﬂ ‘Rt s)(Bz)s)ds, tel,  (37)

in analogy to (2.11). In particular, if we denote the elements of the matrix R(t,s) by
Rid(trs) (‘13 =0y, V)& thEIl (37) yields | |

' t
20(t) = e(t) = = [ Roult,s)r(s)ds - [ Rou(t,5)(Be)s)ds, teET.

Note that here, in contrast to (2.11), the residual term r(¢) no longer occurs outside the
integral sign this implies that the discrete superconvergence result (2.5a) of Theorem
2 1 holds whether we have ¢, =1 or ¢y, < 1. -
Moreover, (2.5a) is also valid for the components z,(t) = ey@i=1,---,w-1)
of z(t), due to the structure of the vector D(t), both for ¢, = 1 and ¢ < 1. However,
it follows from (3.7) that the last component of 2(%) , z,(t) = e)(1), is given by . .-

((t) = r(t) = [ Runlt,)r(s)ds + (Be)(E) - [ Rt s)(BeXs)ds.

Thus, max{|e{)(¢,)] : 1 < n < N} = o(h™t9) if ¢y = 1; for ¢m < 1 (e.g. for the
Gauss points {c;}) we only obtain ma.x{le(")'(t“ﬂ : 1< n < N}=o(h™), in analogy
to (2.5b). In order to generate a more accurate approximation to y(“}(1,) (in the case
where ¢y < 1) one would have to compute e

. _ﬂgf Y= (ti.“(t)_:j 14 #{”FI)U)) o _L t_ E(t,s,u(s), -+, u(s))ds, *t‘“'

corresponding to the cnllota,tiﬂﬁ solution u € S,(,'ﬂ_,,(I'IN) determined from (32)It;;
then easy to show that eg’ )*-.-- y(t) - *uEf )(t) satisfies an estimate analogous tﬂthe

-

one in (2.6).

= o |1-_- =

i L1y
(Lt ]

Pt I PR
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As in Section 2, these discrete superconvergence results hinge on the global conver-
gence properties of the collocation approximation u on I (as well as on the orthogonality
condition (2.4)): | ® o T

(i) It can be shown (see [4] for the underlying techniques) that for the collocation
solution given by (3.2) there holds the global error estimate let Moo = a(A™)i =
0,---,v), provided f and k in (1.1) are sufficiently smooth functions.

(ii) It then follows from the form of the functional (Be)(t) in (3.4) that

y-1p—1 v—1v-—1 -
1Belloo < Co 3 3 lleloo - 1€Plloo +C1 3 2 leloo - |0 = a(h*™)
1=0 =0 t=0 y=0

for suitable constants Cp and C;.
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