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A QUASI-PROJECTION ANALYSIS FOR ELASTIC WAVE
PROPAGATION IN FLUID-SATURATED POROUS MEDIA®
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Abstract

This paper deals with the superconvergence phenomena for Galerkin approxa-
mations of solutions of Biot’s dynamic equations describing eiastic wave propaga-
tion in fluid-saturated porous media. An asymptotic expansion to high order of
Galerkin solutions is ysed to derive these results.

81. Introduction

An isotropic, elastic porous solid sa.turﬁted by a compressible viscous fluid can be
described by the system of partial differential equations {1], [6],

8%u Ou
it — e ot ' 1.1
ASg + € — L(w) = Flz, 1), (2,1) € 2 x [0, ], (L)
where Q is a bounded domain in R?, u(z,?) = (u1,uz) is the displacement vector on
Q, u; = (uy1,u12) and ug(z,t) = (221, uz2) are the displacement of the solid and the
average fluid displacement, respectively, and F(z,?) is the force applied to the system.

The differential operator L(u) is defined by
L(u) = (V - 61(u), V - b2(u), V(u)),
where the vectors 8;(u),i = 1,2, and the scalar s(u) are
Bi(u) = (0i1,0:2), 1=1,2; s(u)=QV-u + RV - uy,
and . o .
0:ii(u) = oy (u1) + Q6;;V - ug, 4,5 =12

Here 6;; denotes the Kronecker symbol, and the stress tensors oi; and the strain tensors
¢;; for § are related by
1 (3111,' Juy 3

6{3‘(“1)5 Ty + —3-5‘—): 1< 3572,

2
oi;(u1) = Ab;; Y ep(w) +2Neij(wa), 1£4, 3 <2
k=1 |

* Received May 4, 1989.



Quael-PIe_]ectmn Analysis fer Elastic Wave Prepagatlen in Flmd Saturated Pe:reus Media 367

A A(z),N = N(z),Q = Q(z), and R = R(z) are the elastlc coefficients fer Q1. They
will be assumed to satisfy the constraints

| 0<-N.,__§N(zj-5N*<m,a:eﬁzﬁuaﬂ, '
0 < A. < A(z) € A < o0, z € Q, .
0<Q.<Qx) < Q"< 0, z€Q,
0< B <R(z)< R <0, z€D,
R(A+N)-Q*>0,2€0. '

In(1.1), Ac R andC € R"“ denote the density matrix and the dissipative matrix
given by

prn 0 p12 O | 1

g -1 017
0 pu 0 pi2j 0 1 9 =i
= . =}
A prz 0 paa O s = B -1 0 1 0|
Lo pe 0 pal 0 -1 0 1]

where p11 = p1 — P12, P22 = P2 — P12, P1 = pi(z) (respectively, p; = p2(z)) is the
mass of solid (respectively, fluid) per unit of the aggregate, and py2 = p12(z) is a mass

coupling parameter between fluid and solid; b = b(:t:) is the dissipation coefficient for

0.
From physical consideration, it will be assumed that

pripn — Py > 0, z€Q, (1.2)
0 < .b. gb(z) <b* <00, 7€ (1.3)

Then, it follows that A is peeitive-deﬁﬁite and C is nonnegative.
We shall impose initial conditions |

u(z, 0):’:;“ e, 3“(:.: o)_u T €Q, (1.4)

and the hemogeneeus beunda.ry cendltmns

(Ox(w) <, B2(u) - my5(w)) = 0, (s, t)eaﬂx[() T), (1.5)

where n = n(z) is the outward unit'normal along N0,

In this paper we shall analyze supercenvergenee phenemena, for the numenca.l solu-
tion of (1 ‘1') The a.na.'lym is based on a regularity assumption on the scﬂutlen of (1.1)
6], {7], and the general.method of an asymptotic expansion,’called a quasi-projection,
of the approximate solution [4]. We shall also rely on some earlier results on the sub-
ject [6], [7], which, analyzed, the éxistence and. umqueness of solution of (1.1) and the
Galerkin precedure for the a.p'pronmate solution of such equations. -
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The paper is organized as follows. In §2 we give some notation and quote some
known results. In §3 we present the Galerkin procedure of (1.1). Then in §4 we develop

the quasi-projection for the pmceduré. Finally, in §5 we give the. superconvergence
results of the same type as those of Bramble and Schatz (2] for Galerkin methéds.

82. Notation and Preliminaries

Let © C R? be a bounded domain. For m a nonnegative integer let H™(Q) =
W™2(f) be the usual Sobolev space with norm

oih = 3 [ 1D%0(@)dz
jol<m ¢ L

For n > 1 the norm of v = (vy,-++,v5) in [H™(Q)]* will be given by

n

lollZ = > llvillm-

1=1

The inner product and norm in [L3()]* will be denoted by

’(‘U,‘HJ) — EL v;w;de, ||t:||.§ = (v,v).

=1

We shali also use the norm on the dual space H'“‘(Q) = (H™(R))’; let

|v]|—m = sup {I(r::”tj ru € H™(Q), lullm # 0}.

Let H(div,Q) = {g€[L¥(Q)*:V g€ L?(1)} with the norm

el aivy = lalls + IV - qll3-
Set V = [HY(Q)]? x H(div,Q) with the norm

ol = lloall} + llealifainays v = (e1202) € V-

Finally, if X is a Banach space with norm I lx and if v :{0,T] — X, we use

. _
ollZagy = [ NIty Tl = 55 sup lv(@ilx:
0 | 0<t<T

Let B be the bilinear form associated with L in (1.1)
- B(v,w) = M(vi,m) + (QV - v2,V-w1) + (_QV-; v1 + RV - 02,V - w2),
for v = (v1,m) and w = (w,wz2) €V, with M- being defined by

Mg = 79 2 S st

- ig=1
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Test (1.1) against v € V, integrate by parts over , and a.pply (1.5) to the (L(u),v)
term. Then, -
&y Ou

(Aﬁ, ) + (Ca,v) + B(u,v) = (F,v),v € V,t € [0,T]. ' (2.1)

Let the matrix E € R1** be given by

[A4+2N A 0 @
A A+2N 0 ¢

0 0 4N O

L @ Q 0 X

Then it follows from the assumptions on the elastic coefficients that E is positive
definite. If A, denotes the minimum eigenvalue of E, there exists a constant ¢ > 0 such

that [6]

E =

B(v,v) > c|jolf} ~ Au||vll3,v € V. (2.2)

It is convenient to introduce the differential operator L* by

L*(u) = —L() + A (2.3)

»

Then, the bilinear form associated with L* is given by
Bi(v,w) = B(v,w) + A (v, w),v,w,€ V.
Thus the symmetric form B, satisfies |
|Bi(v,w)| < cllollv|lwlly,v,w € V, B(v,v) > c|lo|f}, v € V. (24)

Let s > 0 and assume that ¢ € [H*(Q)]2. Let ¢ be determined as the solution of
the boundary problem

') =t €9, (Bi(e) mh(y) n,se))=0, z oM.

To obtain the superconvergence estimate we shall use an asymptotic expansion to high
order of Galerkin solutions for which the following regularity assumption is needed:

Nlerllasz + llezllars + IV - p2llarr < ell#]ls. (2:6)

§3. The Galerkin .‘E_rccedure

Let r > 1 be an integer and let 0 < h < 1 Let T, and T} be quasiregular partitions
of § into triangles or rectangles of diameter bounded by h. Let M, C [H' (Q)) be a
 standard finite element space associated with 7; such that |

g{h{llqo vllo+ hlle — vlh} < clloflh®, 1<s<r+1 (3.1)
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Also, let W}, be a finite dimensional subspace of H(div,{1) associated with T}, such that

inf [Jw - v|o < ¢|w|[sh*, 1<s<r+1,
veW,,

inf [l - vllne < elwll +1V - wll)b* 1<s<rtl (32)
Here we can take Wy, to be one of the Raviart-Thomas vector spaces [5] or the Brezzi-
Douglas-Marini vector spaces [3] of index r associated with 7.

Set V), = M, x W, Then, by (3.1) and (3.2), we have

inf ||u —v|lo £ ¢]lu|lsh®, 1 L8 r+1,
veV,

inf [lu ~ ollo < c(lurllors + flualls + [V - wzll)h?, w= (1, w2), 1< s <7 (33)
v h -

The continuouns-time Galerkin approximation to the solution of (1.1) is defined as the
twice-differentiable map u; : [0,T] — V}, such that

d%uy, duy, ' |
(A ) + (Cw,v) + B(un, ) = (F,v),v € Vi,t € [0,T]. (3.4)

The initial conditions #;(0) and dup(0)/8¢ will be specified later.

§4. The Analysis of Quasi-Projection

In this section we shall consider the quasi-projection for the Galerkin approximation
(3.4). Set J = (0,T) and let @, : J — Vj, be defined by

Bi(ip —u,v) =0, veV,, teJ (4.1)

Let ug = 1y, 70 = ug — U, and 8 = ug — ux. Then it follows from (2.1), (3.4}, and
(4.1) that |

(Aa;iu,v) + (C%gf-,v) + B(6o,v) = (A%i%‘l,u) + (C%?,v) - M(z0,v),

for veVy, teJ. (4.2)

Define maps z; : J — V), recursively by

L X
Bl(Zj,U) =#_(Aa;;;1‘v) i (cag;liﬂ) + A*(Zj—lvv)l veVp, ted,g=1,2,---.
(4.3)

- et .
wj=uo+ 2z +ort+2z, 21, . (4.4)

~and
i 0 = at; —uy, § 2> 1 (4.5)
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Then it is easy to see from (4.2) and (4.3) that
33_.,

(AT0) + (o) + 8O0 = () + #(E5h)- M(eso)

for v € Vh;-, l € J‘r e D:|1121' . (4‘6)

| LletteJandlet0<j<r, 0<s<r—7—1, and & > 0, an integer. Since the
coefficients of I are independent of t, it follows from (4.3) that

B (%,v) = —-(Aag;i?;l v) - (ca;‘f;‘, v) + A.(BEJ;‘,u), v eV (47)
By setting v = (?;? in (4.7) and noting the properties of A and C , we see that
k k42 k+1.,. k,.
152, <l 1Sl 1) o

Let s > 0 and assume that ¥ € [H*(Q))?; let ¢ be determined by (25) Then

(220, ) = (32, 10) = B, (52.0) = Bi(GR00-0), v Wi

Hence, (3.3) and (2.6) imply that

|Ga) < A e, s s (49
Let 1 < g < r+ 1. Then, it follows by the usual argument that
|52l <Gy o Fer@ @

Hence (4.9) and (4.10) imply tha.t

8" 2
15

Next, it follows from (4.7) that
25 0) = (Z4,10) = (5 0) = B(25, 0 o)+ By (5 0)

= B, (L%0-0) + (AL - v) = (AT )

<r|| || hit? s <y —1, 1<q<’.r+1 (4;11)

.f ot* LA Otk+1 Jik+2
+ (03’;;1?1 Lo - 1) (ca;;?;l,so) A.E(‘?;?;;'? o —v)
P " (%’t%‘,ga). - _ (4.12)
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Thus, together with (3.3) and (4.8), this implies that

9k . gk+2,. g+l 5% ’ 1

" ﬂt? — {(” 3t"?2 1“ “ atk?l 1 "n H ;tj:" l“n) hl_+1.
k42, k41, k..

e e DT - B

Then (4.11) and an induction on j imply that with the reduction on the range of s
going from 7 — 1 to 7, |

ak 31+k
|7 !

<c2“3t+"‘

The results above can be summarized in the following lemma.

Lemma 4.1. Iet 1<g<r+landlet0<j<r,0<s<r—3—1,andk >0,
an integer. If 3*tFufott* € HY(Q) forte J, i =1,---,23, then (4.13) holds.

We now turn to the estimation of 8;, which satisfies (4.6). First, we shall set up
initial conditions for (3.4). Set

htiti te J. (4.13)

ur(0) = ul0), Z2(0) = SE(), k<r-1 (4.14)

It follows immedia.tely from (4.14) that

8:(0) = 0, ‘”"(0) 0, &1, (4.15)
Take v = 389: in (4.6). Then,.
1d s 00 00 9% 9\ _ 0%z, 0 8z O
35| (A%e 5e) + B8] + (€55 5) = (A 50) + (€5 57)

(o 50) sl o el v 150

Adding \. d 96,
== NI6xll3 < (||ekun+|\ \|)

to the inequality above and noting the nonnegatweness of C, we find that

(4T 50+ moow] < (I3 [+ Ll v vt + 55 1)
(4.16)

Then, if we integrate (4. 16) in time frum 0 to ¢ and use (4.5) and the Gronwall lemma,
we derive that

“ i "Lw(mm)w + Bkllzeqry

< |22 v |5

+“7_'kI|L’([L*(ﬂ]]=]}- (4.17)

L2 ([L*(9)]*) LA({L3(Q)P)
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Theorem 4.2. Ifk' <r, r<qg<r+1, und un(0) and. Qf—-—({)) are deﬁned by

(4.14), then

2k+42

H = ”Lm{[m(n)}*) F1Bellzaqvry < € Z " Bt | hTFE, (4.18)

LA([H{())

Proof. The theorem follows from (4.13) and (4.17).
Oup,

Corollary 4.83. Ifk<r-1,1<g<r+1, a.nd up(0) and —-—~(O) are defined by
(4.14), then

hite

L’([H*(ﬂ)]“)} ’
(4.19)

ko
% — wnll oo -+ < Z “ 57 " Lo He@)P) F Z | ?;2;-. |

for 0 < 8 < min(k,r — k — 1). |

Proof. Note that u — uy, = (u— ug) + 8 — (21 + -+ - + z;). Then, (4.19) follows from
(4.13) and (4.18).

We now discuss the evaluation of u;(0) and §ﬂ(0) Let k < r—1. To evaluate z;(0)

using (4.3), we nfust evaluate 8%z;_,(0)/8¢?, sz_l(()),fﬂt and zx.1(0) first, which in
turn require 82zx_»(0)/8%2, - - -, 8*20(0)/8¢* by (4.7). Also, it follows from (4.1) that

3%y, 0%u _
BS54 (0) - 55(0),) =0, veVi;
hence, u;(0) and aéi({]) can be evaluated from (4.14) and using F,u%, 4%, and time-

derivatives of the differential equation.

85. Sﬁperconvergence

In this section we shall consider a simple case which assumes that §2 is the unit square
and that the problem (1.1) has a periodic solution of period @, in place of the previous
boundary condition. To use the general argument of Bramble and Schatz (2] to obtain
superconvergence by means of post-processing the computed approximate solution, we
shall assume that 7; (and T}) has a translation invariance. Let 2 = (h1,h2), hi > 0,

and let a = (a1, a2),a; an integer. Define the translation operator Gy by -

Giu(z) = u(: + F"_lhlv a:2+ q;{hz).

Assume that |
| fup € Vi, Yup € Wy, Yo

Set B
dju(z) = [u(z + hje;) — u(z)}/h;,
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where e; is the jth unit vector, and let-h; and hs be comparable in the following sense.
Let h be the parameter of Mj. Then there exists a constant Q, independent of &, such
that | | | |

h: € [h,Qh], 1 =1,2.
Assume that the coefficients of (1.1) are constant. Then 8*u and 9%uj, are the solutions
of (1.1) and (3.4) with data {9°F,8*u°,8*v°} and {8°F, 0w}, 0%vy}, respectively.
Hence, it follows from (4.9) that '

2k Ot u
16w — ullzeqa-+@p) < );0 “FF‘“M{HH'"F(Q)F)

2 32k+i -
* 2 “ atﬂk:: nL?([Hqﬂal(m]ﬂ)}hH” (5.1)

Let Kj be the Bramble-Schatz Kernel [2]
 Ka(z) = K% (2).
Then, we define the post-processed approximation u} to u by convolution with Kp:
5 . uy(z) = I‘i';; * Up. (5.2)

It follows from (2] that |
”Kh * U — 1"’”0 < c“u”qhq! g=10,--+, 2'!",

”Dﬂ(Kh * u)||lm < cué?“u][m, m=0,%x1,+£2,---,
follo < ¢ 3= [1D%ullomy m=1,2,--. (5.3)

laj<m
Thus, by {(5.1) and (5.3),

= ulllzeoa@py < b — Kn* llpooqraayp) + I1Kn * (v — ua)lizeoqracaye)

< c{"u"Lm([Hq-q-;(n)]:)hq'l" + Z "D“(Kh *(u — uh))HLm([H-.(m]:)}
|| <s

2 32k+:' i

Lo ([Hat*(2)]%) + ; “W“L’([Hﬁn(n)]z)}hﬁ-!'

2k &'u

<e{2 |3

Theorem 5.1. Letk <r—1, 1 <qg<r+ 1. Assume that uj 15 defined by (5.2).
Then

Z | g2k+i

2%
lu — wpllzeqrz@?) < c{ ; ||%E|\ ittty T ; || e pIts

L’(IH“'(H)F)} ’

for 0< s <min(k,r—k—1). |
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