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Ahbstract

In this paper we discuss the numerical methods with second-order accuracy

for solving stochastic differential equations. An unbiased sample approximation

“method for I, = _E:"" (B — Bt_)gdu is proposed, where {B,} is a Brownian

motion. Then second-order schemes are derived both for scalar cases and for

system cases. The errors are measured in the mean square sense. Several numerical

examples are included, and numerical results indicate that second-order schemes
compare favorably with Euler’s schemes and 1.5th-order schemes.

§1. Introduction

In this paper we discuss an approach of numerical solution for stochastic differential
equations (abbreviated SDE) with second-order accuracy. |
 Assume that B, is an m-dimensional Brownian motion on (2,S, P), and & =
o(B,,s < t) is an increasing family of sub—sigma-algebra of $.
Consider a SDE on (£, S, S, P), as in [1] or [15]:

dX (1) = b(X(t),t)dt + o(X(1),t)dBy, X (0) = X, (1.1)

where b and ¢ are two sufficiently smooth functions satisfying the Lipshitz condition
with respect to i, «. For simplicity, we only consider o independent of ¢ and z, but the
proof given here is valid for the general case without any more essential difficulties.
SDE (1.1) has exerted a profound impact on the modeling and analysis of problems
in physics [2], chemistry [3] , biology [4] and other fields {5, 6]. So more and more authors
pay their attention fo the numerical method for solving the SDE, such as H.J. Kushner,
J.M.C. Clark, C.C. Chang [7,8,9,10,16]. Since solutions of the PDE can be expressed as
functionals of solutions of the SDE, numerical solutions of the SDE can also be applied

" ived May 12, 1989.
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to numerical calculations of solutions of the PDE Hd; Kushner, N.J. Rao succeeded
in obtaining numerical solutions of the PDE by computing functionals of the numerical
solutions of the SDE [7,12]. However, t)i+ numerical methods of highest order accuracy
for solving the SDE used by the authors above are of order 1.5 (a. numerical solution

X} of equation (1.1) is said to be (7 order a if

E (El:l;lvb(‘x:t) E‘{&(X(t ))) (;VI 4 Czh_2a

where X (1,) is the solution of equa.tion (1.1); see [16] or Section 3.). In order tﬂ.get
higher order accuracy, as pointed out by C.C.Chang and W.Rumelin [11,13], the main

g1
difficulty is how to simulate I,, = f (B, Btn) du, where B, is a one-dimensional
t

Brownian motion. Because of the Eomplemty of the distribution of I,, [14], it seems
difficult to directly sample I,,. In this paper an unbiased sample approximation for I, is
proposed. Then second-order accuracy numerical methods both for the scalar case and
the system case are drived. Numerical results also show that the second-order method

produces errors smaller than the 1.5th-order methed does.

' §§. An Unbiased Sample Approximation for I,

First, we outline the probability background for later use. -
Definition 2.1 (martingale). Suppose that the real valued stochastic process Y (1)
~ defined on (R,S, P) is adaptable to {3} which is an increasing family of sub—sigma-
algebra of t > 0. {Y (), ¢, +00 > t > 0} is called a martingale, if V1 > 0, s > 0, with
probability one

ElY(H) < +o0,  E(Y(t+9)IS:) = Y(2)

Ito Formula. Let
dX; = b( X, t)dt + o(X;,1)d B, |

and F(z,t) be a continuous function on B® X R} together with F(-,1) € C! and F(z,-) €
C?. Then F(z(t),t) satisfies

dF(X,,1) = Fu(Xi,0)dX; + Fi( X, 1)dt + %FH(X;, Hodt.
For example, when F(z) = X?,dz(t) = dB,,
B! Bg—EJBdB +(t—28), t>s>0. | (2.1)

As stated earlier, to sample I, directly seems difficult. Nevertheless, if we have a
sufficiently good approximation of I, which can be easily sampled, then the second-
order scheme can still be obtained. Proposition 2.1 suggests a method for this sample
approximation of I,.

Suppose that . & _

| = (t=0,.. t,+1_t.+h ity =T)
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is a partition of [0,T], where k= TIN: Bm B(z) are twn mdependent Brownian

motions. We define
Ik = ] (B — B2 du, k=1,2,
i,

thi
712 = jt '8 = BY(BY - B2)du.

Let {S7,...,5n} be a subset of [tﬂ,tn.,.l],, with t, = §% < 87 < ... <55 = tny1,

n,— St =hfm. (For notational convenience, denote S} = St.)

e Y

-1
i=1 -1

h 2 1
_ B yiu+ La, - BOYBY, - B)

l‘-n-l

"'I 1 m

m 5; h m - h2
() 25280, - 5 [ (B - B yiu-+ 1 (80, - YY) + 5
Ji—1

t=1 i=1
k=1,2
»
Proposition 2.1. For any n, we have
1) EIE‘) = EI‘E’) = %hg, k=1.2; (2.2)
. ) _ ez < 2 '
iy . EBUl=15 )" < o ke 1.2, ‘ (2.3)
iii) EOL = EI2 =0, (2.4)
: 12 1242 h*
iv) E(0,-J,) < - (2.5)
Proof. In the proof of i) and ii) we omit the dimensional index k.
i)
hz 3
_2 E(BJ:— o3 Btn) (B Bﬂ'l l)du (Z(‘Bﬂ'l 1 Btn) ) 2m
1=1 -1 i=1
223 (Basy - Bu) [ (Bu— Buy)du
i=1 8i~—1
b {2 ' _
s m (E ((Bai-l = Btn)2 ~(S8y — SO))) + 0.5h%. (2.6)
1=1
Equation (2.6) implies that ETy, = 0.5h%. |
ii) Since

f t““(B — By,)du = E " (B, - By, )du

j=1 > %i-1
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= i ( | ) (Bu o -Ba,'_.l )d'ﬂ + ( T Bgn)dﬂ) ,',. (27)

il_—-_l "i‘““'l ll--l

the substitution of equation (2.7) into equation (2. 6) give;s '

=2 Z B!i—l (B Bﬂ:-l )du e Sy (E(BE.-..I - B.En - S-li_:[ + SD))
t=1 3i-1 =1

tn+1 :
+ %hz e 2Btn ./g (Bu — Btn )du.
On the other hand,

trni1 tnhs1 En '
£ f [ By — B Wk = f (B2 - B2 )du - 2B, f T(By -~ By )du.  (29)
3 tn tn |

mn

Using the Ité Formula, we have

tn41 fu - 1 2 tntt
I, =2 B,dB,du+ >h* - 2B, f (8, + B )il (2.10)
tn in
P
_22/ [ BdBdu+2Ef [ B.dB.au
8i~1 V3.1 =1 8.1 vin
1 o tn-l-l
+ 5h? - 2B, /t (B.— B, v (2.11)
L 3 u m 8 i .
=2} f B,dB,du+y [ (BX_ - B2 S,  +So)du
t=1 i1 v 83 =1 851

(2.12)

I, - I‘,, = 22 " (B - B,,_,)dB,du.

In view of the properties of the martingale, we deduce that

E(I ~To)? = 43°E ( / “ [ (Bu-B,_ )dB,,du)

Fa $i—1 8

4
<4——-Z/ (v—s, 1)dvdu< h

iii) The proof is nothing but a simple calculation of expectations of stochastic inte-

grals.
iv)

tng
g2 (B(” B‘”)(B(*‘J B‘“’)du_.z f (BY - BY(B® - B(”)du

in =l

T i ST T BRI RS P
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. A _
— [" M " (2 S -
=5 f B B®du— BOY j (B — B™)du - BD [ B{du
i=1 ¥ 31 j=1" %=1 : En | |
mors o) n@) yvpWay+ S B [ BY
” B® — B® }BMdu + Y B f B duy
;.[Ii_l( | t—l) ; i—1 B
m 8; tn
-BY f (B® - BP)du - B | " B0 gy

=1 ¥ %l

M s m
=y [ (8D - B@ )(BY - BY),)du+ ),

i=1 ¥ =1 v -1

(B® — B®,)BY, du

#i-1

+3Bay - B [ BWau-BRY [ (BY - Bidw

1=1 Sl i=1 " #i-1

Rearranging the terms in the equation above, we find that .

=y

&

‘1-
i o

1
(BP - BO,)(BY ~ BY),)du + 07,

i=1 L
namely, #
p o=y [ (B® - BY,)BY - B, )du
i=1 V%~ |
Hence |
m 8 ' & 4
sz - oy = 55m ([ 0 52, a0 - B, ) < 25

dom variables and have nor-

Assume that {&ﬁW}H}, {.ﬁﬁf}k]} are independent ran
sample, and k is the dimen-

mal distribution N(O,h/m), where a represents the a-th
sional index. Let

Acw® =3 AW, k=12 (2.13)
=1 _
aspi) = Lraew® 4 ﬁhﬁ:gi"), b 1,2, (2.14)
9 J 6 ]
acg® =5 A, k=12 (2.15)
1=1 .
| m 1—1 : 5 s §—1:
pst =30 (L aaw®)azs + asw®)azpl
_ 1=2 1=1 1=1
o gis] i-1
+—( azw}”) ( a:‘:W}”) ; (2.16)
W= - j=1 |
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AZy® = 23" ( (Z a“w"") a“ﬁ“") i(i ﬁ""’m) * '2%

i=2 \ Y=1 M =2 \j=1
k=12 (2.17)
Proposition 2.2. For Borel measurable function f on R", tht.a distribution of
FAZw, A7, AT, ARz, ATy, AGy@), h)
coincides with the distribution of |
f(AnBY, 5, B®), 50, 53, 612, 11, TO), 1)

where

’(f) - /fn+1 (B-g(;k] i Bg:])dﬂ, k= 1,2.
tn '

Proof. see [16].

§3. A Second Order Scheme

F

First we consider the scalar case and still use the symbols in Sec. 2.
Theorem 38.1. Assume [b®)] < L,i=10,1,2,3,4,m = [h~}]+1,

a1 =X + M X7 )h + f:"'()’f""’)f:!(X"")h2 4+ b’(X“)ﬁ“G

—b”(X“)ﬂ v+ A W, (3.1)
which represents a-th s:mulattan, anda = 1,2,...,N. Then for any ¢ € Lip., we have

(E—-l 'ﬂ({f_ifl'_mxan))) <Ay, (3.2)

where Cy, Cy are two constants independent of N, h, and X (t.) is the solution of
equation (1.1).
Proof. The theoretical scheme corresponding to equation (3.1) is defined as

Koy = Koo + HXe )b+ 8(X0, J0(Xer 42 4 B(Xey ) + 55X, )T + BnB. (33)
If the following assertion is true:
E(X., - X..-(tn))*.s ch? ' (3.4)
where cisa constant 1ndependent of k, then

“}':(E-'il $X3) Etb(X(fn))) <2E(—':M—E¢(xt,))’

421 E(X(tn) X..)’, (3.5)
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where L, is the Lipshitz constant of ¥. According to Proposition 2.2, equation (3.2) is
obtained. So what remains to be proved is equation (3.4). From equation (1.1) we can

write

tn+1 |
X(tag1) = X(1n) + ./t WX (u))du + A, B.
By means of the Taylor formula, we obtain

X(ta1) = X(ta) + b+ ¥ [ o ( " B(X (v))dv + mﬂ) du

in

N 1, ftn+1 ((ft: b(){(v))dv)z + 2A.,B j: b(X (v))dv + (&uB)a) du

2",
+ %bfﬂ ft:"“ (( t: b(X(v))dv)3 + 3(/: b(X(ﬂ))dﬂ)zﬁlnB
+3( t: b(X(v))dv)(ﬁ“B)z + (.&uB)3) di
+ il'fj,,:““ b (m (X () — X(ta)) du + AnB, - (3.6)

; . »
where 50) = bO(X(ta)), i = 0,1,2,3. Let M, = X(ta) — Xt The subtraction of the
above equation from equation (3.3) gives |

Magr = Mp + (b= Xy ))h + 8 /t:nﬂ ( - b(}f(ﬂ))dv) du

tn

- %y( X )0( X YR+ (Y — 6(X4, )00 + -;-b”L-.. — %b"(X:..)Fn

+3" | (( j b(xcv))dvf +2AB [ b(X(v))dv) du

2 Jia fn
+ -;-!b’" ft :"“ (( : _b(X(u))dv)3 + 3( jt: b(X(v))dv)zﬁuB
+3( 4 (X (v))dv)(ﬁuﬁ)z) du
¢ 2 [ @uBpant 3 [T K0 - X(tn))'du

= Mo+ (b= BX Dk + S0~ B (X XL + (O = B (Xe )

1., 1 n . na T i [ | g
4 ¥ L~ Zb"(Xe )T + (F) f A, Bdvdu + bb j (u — t,)A, Bdu
: f t :

2 - e - Jta

1o tntl 3 &0 tng1 fU v .
4+ b (AgB)*du + (V) | b( X (w))dwdvdu
_ ' tn tn “in



Second-order Methods for Solving Stochastic Differential Equations , 383
tnd1 5 | | | |
-—b' j f () (X (v) — X(tn))*dvdu
in

p %b" ] nt1 ( ( 1 B X(ﬂ))dt,) +2A,.B f b’(m)(X(v) - X(tﬂ))dv)

i -;-!rb"" /!n+1 (( u b(X(’U))d_“) i 3( (X(*u))dv) f.‘;uB

+3( b(X(v))dv)(& B)*) du+ f B )(X () — X(tn)Y'du. (3.7)

u ingl |
A, Bdvdu + bb" ft " (w —1,)Ay Bdu

in in

+ b | " (AJB)du SR (3.8)

tn
Ry = (b)? ] f, t " B(X (w))dwdvdu + —b’ f: f: “F(m) (X (v) — X (1)) dvdu
¢

tn

paw [ (( s +3( [ (X(@)do) A

+3( b(X (t:))dtr) (ﬁuB)z) du + :' / bm(m (X (uw) - X (t“))‘ldu (3.9)

It is clear that

" %b" ]t n"“ (( i b(X(u))du) +28,B [ V() X(v) - X(t“))dv) du

E{Ri|9:,) =0, (3.10)
E(R )= O(hs), (3.11)
E(Ry) = O(ha), . (3.12)

E(R%) = O(h°), (3.13)
and now (3.7), (3.8) and (3.9) combine to give '
M4y =Mn + (b - H(Xe )+ -(b'b 14C.C W(XeA? + (8 = b'(X1n )P

4 28T - 2 (Xiu )T+ R + Ra. . (3.14)

Taklng expectatnons of squares of both suies of (3 14) and using (3.10)-(3. 13) with
E(ﬁnlﬂ‘t,) 0, E(In - ThlSe, ) = 0, we. obta.in

| EM2, = E(Mn+(b XDk + 2 (Wb - b'(thb(th)h’)z .
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" | -
+ E(® - ¥(X.)) 8, + EE(b”In ~ b"(X;, )T )?

\ 2
+2F (M“ +(b— (X, b + %(b’b _ (X)X, )h’) R,
+ BV ~ ¥'(Xen )Ba(b"In — 6"(Xe,)T0) + 2E(b — ¥'(Xe,))Ba(Ry + Ry)
+ E(V"I, — b"(X0, )T)’(R1 + Ry) + 2ER R, + O(R®).
By the conditions in the theorem, it follows that
EM2,, < (14 Lh+ L*h®)EM? + 3L2Eﬁ’M“ +3L%E(I, — T,)?
+3L2EM2I? 4+ h(1 + Lh + L*h*)EM? + O(K®).
From Proposition 2.1, we conclude that
4 |
EM?,, <(1+ LA)EM? + o( B ) + O(hs)

where L, is a constant independent of 4 and m. Thus Theorem 3.1 follows.

In the system case, we refer to Theorem 3.2. The proof is similar to the proof of

Theorem 3.1. Now equation (1.1) can be rewritten as
dz(t) = b(z(t),y())dt + dBY, z(0)=z (const.),

dy(t) = f(z(t), y(t))dt + dB), y(0)=y (const.). (3.15)

I ' OF1 a2

Theorem 3.2. If sup Wf(z y)| and sup p Yy vy

0< 1+ g <4 in the fbﬂomng aystem of equat:ons

g(z,y)| are finite for

a1 = X5 +4X3,Y.)h + WX, Y, WX, Yo )h?
—b' y(Xns Yn) f(Xn, Ya)h? + 0,( X5, Y2)AZBD) 4 b, (X, Yo )AZE()
-b” I (Xn, Ya)A%y () 4 -b” (X, Yo )A2H(2)
+ 62 (Xn, Yo )A20,5 + a;'wm, (3.16)
1 =+ XY+ 2 (XS YW X, Yo )3

+ lJﬁ;',(x,.t.”. Ya) f(Xn, Ya)h? + £1(Xn, Ya)AZBD + f3( X, Yn)AZA?)

. 1
-- n(xmn)mf‘u 5y Xn, Ya)Any®

+ f2y(Xn, Yo )AL 012 + A:W(’).
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then Vi € Lip., and we have

N o a.r
E(Et:l 'bbg;‘:{n!}’n ) i E‘l,f!(X(tﬂ) Y(tn)))

where C'1, C3 are two constants independent of N, h, and (X (tn) Y(tn)) is the solution

of equation (3.13).
It should also be pointed out tha.t although the second-order scheme needs some

more arithmetic operations in each step, for a given tolerated error, this scheme allows
a larger time step size than Euler’s or 1.5th-order scheme, and the total computational

work of the second-order scheme can still be of smallamount. Thus, besides its high
‘accuracy, the second-order scheme ca.n_ also be more efficient in computation.

01 s
=+ Czh (3.17)

§4. Numerical Results

Example 1. One-dimensional non-linear equa.fion

| z(0) =0, dz(t) = e~*dt + dB;. (4.1)
We consider the expecta.tmn E(exp(z(t}))), which has the exact value
g E(e*)) = 3¢5t — 2.
Taking & = 0.1, we have '
Euler’s scheme.
' 1 = Xp + e %5 h + ATW; (4.2)
1.5th-order scheme:
o = Xa+ e Xnh - 0.5e72Xp% — e XRAYS 4+ ACW; (4.3)
second— order scheme: :

w1 = XS + e X2h — 0.5e72X312 — e~ XIA%G 4 AW + 05655 A%y, (4.4)

| Accnrdmg to Theorem 3.1, m = [0. 1"*] + 1 = 3. We use the random numbers
genera.ted by the Box- Mu]lel: method, which are normally distributed, with means 0

a.nd variances 0. 1/3 Hence -

CAZW = MW, FATW, + AZWs, R (4.5)
+Af.',? ﬁ“W-g.”l\/_me” i=1,23, . (4.6)
) A,.ﬁ -a"ﬂl + A8 +A30s, - (4.7)
’f"**"f" gy -mtha,.ﬁa +455) + M"WaA“ﬁaJr ((mwm
(0 1

_.+__-(A:W1_+ ATW,)?) + oL z (4.8)
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In Table 1, we list the computation errors of equation (41) by usiﬁg equations (4.2),
(4.3), (4.4). ' |

Table 1. Numerical results by using three schemes

Number of simulations: N = 10000 step size: t = 0.1
Number of nodes 0.1 02 | 03 0.4 0.5
EULER scheme 0.007013 | 0.012872 | 0.012614 | 0.023975 | 0.033028
Order one & half scheme | 0.004048 | 0.009846 | 0.022007 | 0.023118 | 0.026635
Second ordt_ar scl_}eme_ 0.001000 | 0.003424 | 0.012165 | 0.009580 | 0.009295

o

Real value 1153813 | 1.315513 | 1.485503 | 1.664208 | 1.852076

Example 2. 2 x 2 system of non-linear equations
 da(t) = e =@~dt 4 dB{Y, z(0) =0,
dy(t) = =004z + 4B, y(0) = 0. C(49)
We consider the expectation E(exp(z(t) + y(1))), which has the exact value
" E(emO+vl)y = 3¢f - 2. | |
Let h = 0.1 as in example 1. We can generate AgW(’f), ﬁsﬁﬁ“‘), Aﬁ‘y("). In addition,
a0z = AW OAsE? + (aawi? + agwi)azss
+ agwPags +(aaw? + Aw?)A%6"

1 |
£ %-(azwf";szwf” + (AW 3 Acwy AW + AzwyY)).

In Table 2, the errors of the computational results are listed.

Table 2. Numerical results by using three schemes

"~ Number of simulations: N = 10000 step size: £ = 0.1
Number of nodes 0.1 0.2 0.3 I - 04 | 0.5

T Py

EULER scheme | 0.027574 | 0.068065 | 0.108164 | 0.154767 | 0.199851

Order one & half scheme | 0.022175 | 0.036650 | 0.055429 0.069115 | 0.091179
 Second order scheme 0.007543 | 0.005092 | 0.004032 | 0.002320 | 0.004634

Real value 315513 | 1.664208 | 2.049577 | 2.475474 | 2.946164

From the above two examples, we can see that the second order scheme is better
than the order one and half scheme. The etrors are reduced by one power of the step
size. This result is consistent with our theoretical analysis. |
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