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Abstract

In this paper we consider two biharmonic problems [13] which will be conventionally
indicated as “simply supported” and “clamped plate” problem.

We construct a decomposition method [16], [19] related to the partition of the plate
in two, or more, subdomains. We carry or the numerical treatment of the method
first decoupling these fourth order problems into two second order problems, then
‘diacretising these problems by mixed linear finite elemment and obtaining an algebraic -
system. Moreover we present an iterative block algorithm for solving the foregoing
system, whith can be efliciently developed on parallel computers.

At the end we extend the method to the respective biharmonic variational inequal-
ities [10].

Notations

Let:

— {1 be a bounded open set of B2, whose boundary I' = 311 is “sufficiently” regular 8];

— 1 = 2 Uy U Qy, where (s = 1, 2) are sufficiently regular open sets staying in the
opposite sides of a regular curve ~;

— w C {1 be any regular open set containing v. We will call w “lacing” set of {1; and {1,
owing to raisons that will be clear in future developments;

— I =98

— Ym be the trace operator 3™ defined on the boundary of an open set, n being the

- external normal vector [8].
We consider the following functional spaces:

(1) H := L*(01) endowed with the scalar product (u,v)0.0 = / uvdz and the associated
0

norm;
(2) Hi=={v:ve H/v=0a.e. in (1, }(s = 1,2) where the indexes are counted modulo
2 when necessary;

(3) V := H'(01) with the scalar product {u,v)y = / (grad u- grad v + uv);
Q
(4) Vi:={v:veV/v=0ae. in ,.1},:=1,2;

(5) Vo= Hg (1) with the scalar product (u,v); g = / grad u- grad vdz;
1

(6) V= {fv:veV/iv=0ae in,,},1=1,2
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(7) Vs i= {v:v€ Ifn’/u =0 a.e. in ;\w, 1 =1,2};
(8) W := H*(9) AV or W = H2(0) endowed with the scalar product (4, v)w = [ Au -
0

Avdz, where A- = 33 - +022- is the harmonic operator;
(9) Wi:={v:veW/v=0in Qi11},0 =12
(10) W3 := {v: v e W/v=01in \w(t = 1,2)}.

Remark I. We remark the following obvious relations {20]:
(11] V=V 'l""?'ﬂ + Va;

(12] T; == §1 + ‘;3 + {;fz;

(13) W — W1 +W3 +W2

First Part

1. A Minimum Problem in W = H3(Q) N V. The Euler Equation. The Simply
Supported Plate Problem.

We consider the foflowing potential energy functional for a simply supported plate [13}:

F(v) = 5 lofy = (f;9)oq, veEW, fEH. (1.1.1)

It is well known that F is weakly lower semicontinuous, Frechet differentiable, strictly convex,
coercive and that it results [8]:

< grad F(u),v >w= (u,v}w — (f,v)on, YVEW (1.1.2)

where the symbol < o, 0 >w denotes the duality pairing between W and the dual space W',
As a consequence of the above quoted properties we conclude that the extreme problem:

ulgv F(v) | (1.1.3)

has a unique minimum point u:
= mi 1.1.4
F(u) = min F(v) (1.1.4)
which corresponds to the unique solution of the following W.elliptic variational problem:

ueW: (u,v)w = (f,v)on, YVEW. (1.1.5)

As a consequence of {1.1.5) the strong formulation of the simply supported plate problem
is, in formal way, the following:

A2y=f in{]
(1.1.6)
You|r = YoAulr =0 |
where A? is the biharmonic operator: A%2. = 38y111 - +201192 - +02222- The condition

voAu|r = 0 is “natural” that is in weak sense.
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It is well known [17] that, if 02 is regular enough and f € H, the golution u of (1.1.5)
belongs to H*({1) nW. If (1 is a convex polygon u € H3(Q) N W {7].

We consider now a function w € H4(f1) and mention the so called Green’s formula (8]

/ Aw  Avdx = f("m&w v — 714w - y0)dl + f A%w - vdz, Wve H(1). (1.1.7)
(1 iy 1.

With the aim of studying a decomposition method we consider the solutions ui(t = 1,2),
in the strong sense, of the following problems:

A%u; = f; a.e. in {1;,
'Tuuilr‘.-\—r st ’l’ﬂﬂuill“.r\-; = D:I (11.8]
'TD“:"T = Pi 'fﬂﬁuilq = Oy

where f; = f|g,; 0, 0: are regular functions.
By applying (1.1.7) we obtain the following relation:

/ Au; - Avdzx +/ Aty 0 Avdz = f{qn&(ul —ug) -y — 71 Ay — us ) you)dy
{1 » (1 g §

& / fvdz, ¥V ve H3(R). (1.1.9)
£l

{1.1.9) suggests the transmission conditions which guarantee that u; +u, coincides with the
solution u of (1.1.6) belonging to H4(N).

We obtain in fact the following necessary and sufficient conditions
Yo(ur — ua)ly = v1(u1 — u2)ly = %A (U1 — u2)ly = 11 A(u1 ~ ug)}, =0 (1.1.10)

which are equivalent to the trace conditions:

Yoty — u2)|y = 71 (uy — uz}ly = ya(uy — uz)]y = v3(u; — uz)ly =0 (1.1.11)

as 1t can be verified by some easy but tedious calculations.
It must be said that in (1.1.9)

-(1.1.11) the normal vectors are conveniently oriented to
avord misleading changes of sign. |

2. The “Decouplage” Operation.
The problem (1.1.6) is equivalently expressed [6), 7] by:

—Ad=fae in{l, —Au=¢in Yod|r = Youlp =0 (1.2.1)

we consequently have the following weak formulation [7], [10]: Find (¢, u) € V X V such
that

(<35.,z)1,n =(f,z)on, Vze€ I«z’, -
(v,2)1,0 = (4,2)00, VzeV.

By this formulation we can construct the decompesition method.
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3. The Decomposition Method.

Taking in mind the relation (12) of Remark 1, we have that (1.2.2) is equivalent to the
o Q
following problem: Find (¢,u) € V x V such that

(‘i’: z]l,ﬂ = (frz)ﬂ,ﬂi Vz € ;i! t = 1,2,
(6, 2)1.0 = (f,2)o.0, V2 E€Vs,

) (1.3.1)
(u,2h.0 = (¢,2)o0, YzEVi, 31=12

(u'i z)lﬁﬂ = (¢:z)ﬂ,ﬂ: Yz € Vs

in fact as a consequence of the Green’s formula applied to the second and fourth equation
in (1.3.1), we obtain a unique determination of:

'Tﬂui'f: 'Tlu"f: 'Tﬂ‘i’l-'r = _Tﬂﬁulﬂr: "fl‘i’l'r T _’Ilﬁ“‘l'y (1'3'2)

that is (1.3.1) imply (1.1.10) when we set

» Uy = ulﬂ.‘: q{’i = ¢‘nn ? = 1: 2.

o

4. The Mumerical Treatment of (1.3.1).

Just to simplify let us assume {1 to be a convex polygonal open set decomposed into two
polygons (3;(¢ = 1,2) by means a polygonal curve 7.

We operate a “regular triangulation” T}, of {} 7] which includes v among her reticulation
and discretize (1.3.1) by finite linear elements 7]. We obtain in this way a linear algebraic
system: Find (®,U) € RM° x RN” such that

AI?fiin=bI?, ‘I:=1,2,
Ag,i®;5 = ba,
(1.4.1)
AI:]jini o nyif:'@fi’

Ag sU; = Dg, s ®;

where: N© is the number of nodes in {1,
JO := the set of indexes of nodes in {},
J? := the set of indexes of nodes in {l;, = 1,2,
G = the set of indexes of nodes on 7,
I,:=1° UG,

J := the set of indexes of nodes in wy. wy being the stripeunion of triangles T € T, such

that T N~ # &,
h := the finite linear element related to node zr,

Aro yo = {ars}ioxro = {(sﬁl?,tﬁ?)l‘n}fﬂ}{]ﬂ is a Gram’s matrix (stiffness matrix),

Dyosgo = {drs}roxre = {(#%, 7 )o.n b roxio (mass matrix),
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bIﬂ = {b,};n = {(f,gﬁi"}fﬂ [lﬂﬂ.d tEl‘IIl).

The system (1.3.1) can be easily solved by an iterative method since the matrix Ajzo ro 1s
positive definite. We start solving the first equation, assuming an initial guess $2. Then
we regularize @0, by solving the second equation with respect to ®; and we continue using
these new values as initial entries for another cycie. In the end we pass to solve the third
and fourth equation, by means of the same computational technique.

This method is an iterative block method whose blocks are linked with the selected
subdomains. The lacing set w;, and the matrix As s enables the discrete approximation of
all the above quoted transmission conditions.

5. Another Numerical Treatment.

For a further simplification we remark that we can diagonalize the mass matrix Djo jo if
we compute the terms d, ., by numerical integration formulas exact for polynomials of degree
less or equal to one instead of degree less or equal to two. In fact in this way we have [11],

[12]:

d,, = h*5,,, 6, , Kronecker symbol. (1.5.1)
With this simplification the system [10}:
AIDJD(I’IIJ - bfl},
. (1.5.2)
Afﬂifu UID = .Dfi}‘fﬂ@fﬂ

which is the discretization of (1.2.2), is equivalent to [10]:
Tpo joUpo = byo (1.5.3)

where Tyo yo = 1/h?(Ay» 70)? is the “bending” matrix, that approximates A? and the bound-
ary conditions, Tyo joujo is, after all, a bending difference formula with central term ¢, . U,.
For using the operator Tyo jo we write the following direct decomposition method: Find

it € W auch that

{ (ﬂ:ﬂ')w = {f: z)ﬂ,ﬂ: Vz € Wi! 1 = 1,2, (154)

(u,2)w = {f,2)o.n, YzeEWs;,

Owing to (13) in the Remark 1, (1.5.4) is equivalent to the problem (1.1.5) and gives the
following dizcrete method: Find U;o such that

{ TJP,f‘-Uf‘rzbJP! ‘£=1,2,

TanUn = by

(1.5.5)

where: A := the set of indexes of nodes appearing in the foregoing difference formula whose
central terms are on G

J2 1= D\K, i=12

N :== the set of indexes containing A, that has an extension suitable to express the
complete difference formula with contral term on A.

Remark II. The decomposition method (1.5.4) can be seen as a computational method
for the minimum point of the functional (1.1.1). In fact starting with an initial guess u°
defined on {1, we construct the following iterative procedure [20]:
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n.th step. We compute the minimum point u™~1/2 one by one on 1; and {1, with data
to(u"~1/% — y*~1)|, = 0, we then compute the minimum point on w and, with a welding
operation, obtain the function u” on (1.

In this way obtain a sequence {u"}, that approximates the solution u of (1.5.4) and
of (1.1.4). The numerical treatment in section 5 carries out this algorithm in the finite
dimensional space.

Remark III. The convergence of the mixed finite element solution of (1.5.3) to the
continuous solution of (1.1.5) was theoretically verified and numerically tested in many
concrete experiments {10]-[12], [15].

Second Part

1. A Minimum Problem in W = HZ(1}. The Euler Equation. The Clamped
Plate Problem.

Let us consider now the functional (1.1.1) with the new meaning of W, we reach the
same conclusion {1.1.4) and the weak formulation (1.1.5). The strong problem of clamped
plate is the following [13]:

; { A?u=f inf],
Youlr = T1ujr = 0.

It holds the same regularity theorem ‘qunted in the First Part and the same transmission
conditions on v (1.1.10) related to the partition {1 = {} Uy U {l2.

(2.1.1)

2. The Mixed Formulation of (2.1.1).

The weak formulation of (2.1.1) differs from {1.2.2) for the condition.y,u|r = 0 which
I‘Eplﬂ.CEE "Tnﬁ.ulp = (.

It is well known [7], (10} that one obtains the following problem: Find (¢,u) € V X 7
such that |

(¢,2)10 = (fr)o, VZEV, ) (2.2.1)
(u’ z)l,ﬂ m— (¢;: z)D,ﬁl VE = V.

It is important to remark that the second equation in (2.2.1) implies, in weak sense, the
condition 4 u|r = O, in fact, by applying the Green’s formula, we have:

(v, 2)1.0 = f grad u - grad zdz = [ Y14 - Yozdl —-f Au-zdz = (¢,2z)on Yz E V. (2.2.2)
{1 I {1

Soif z & I:;' we obtain:

—[ Au - zdz = (¢, 2)o.n (2.2.3)
{]
that is:

—Au=¢ in (] (2.2.4)

if z€V 1t results:
Tulr = 0. (2.2.5)
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3. The Decomposition Method.

By analogy to the process of the First Part, section 3, we construct the problem: Find
O
(¢': “) €V xX V such that

(¢':3)1,ﬂ = (f: z)ﬂ,ﬂ: Vz € 1;;‘, s =1,2,

(¢,2)1.0 = {f,2)o.n, VzE Vs, -
(u,2)1.0 = ($:2)o.0, YzEV;, 1=12,
(uiz)l,ﬂ = (‘i’:ﬂﬂ,ﬂ: Vz Ep?'a

where we use the usual notations. By taking in mind (11}, {12) in the Remark I, we verify
the equivalence of (2.3.1) to (2.2.1).

4. The Numerical Treatment.
Discretizing (2.3.1) we obtain: Find (®,U) € RN x R¥ * such that

AI?,I.-qui — bfl_l, 1 = 1, 2,

o Ag 1P s = bg,

A f.-Uf- =DI§',I.-‘I)I‘:

¥

(2.4.1)

where: N is the number of nodes in {1,
I := the set of indexes of nodes on {1,

I; := the set of indexes of nodes on {1;.

Diagonalizing the matrix Dy ;, as explained in the section 5 of the First Part, we obtain
the system: Find Ujo such that

{ TinfiUfi =bJ‘p, 1:=1,2,
TanUn = by

(2.4.2)

where, in this case, an easy check [10] gives:
Tro jo = lj'thIulgALfﬁ.

The bending matrix Tyo jo approximates A% on (I and the boundary condition Youlr =
"T]_'I.l-l[‘ == i,

Third Part

1. A Minimum Problem on a Convex Set. The Biharmonic Variational

Inegualities. _
We consider the functional (1.1.1) on the closed convex set K [1], [21]:
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K :={v:veW/v > a} (as an example) (3.1.1)

where « is a fixed sufficiently regular function, such that a|r £ 0. The unique minimum
point « is the solution of the variational inequality [21]:

ueK:(uv—ulw > (flv-—u)on, YWwelkK. (8.1.3)

If 0 is sufficiently regular, f € H, and alr < 0 the solution u € H3(0) n K!°l.
By means of a decoupling procedure, we obtain in the case W = H2(Q)nV (W = H§ (1)),
the equivalent weak formulation['®l: Find (¢,u) € V x K((¢,u) € V x K) such that

(ér z]l,ﬂ e (f:l z)ﬂ,ﬂ: Vz € "n’: | ﬂ (313)
(v,2-u)1,0 2 ($,2—d)on, VZzEK

where

Ki={z:2 ET:"(: €V}/z 2 a a.e. in {1}
Equivalent to (3.1.3), (3.1.2) are the following systems:
O
Find (¢, 4} €V x K((¢,u) € V x K) such that:
!‘i’t’)l,ﬂ e (fr z)ﬂ',n: Vz € V;I: 1= 11 21
(¢,E)1'ﬂ = (f: z)ﬂ,ﬁj Yz € VB:

. (3.1.4)
(u,z = u)1_n > (4;‘5,3 = u)mﬁ, Yz € .R;, t = 1, 2,
(u,z = u‘]l,n 2 (¢:z T “)u,n: Vz € R3
where o
R,:={2:z€u+Vi(zeu+V)/(2z—a)la, 20 ae. },
K := {z:zEu+i?3f(z—a)|u >0 ae. };
Find u € K such that:
(4,v — u)w > (f,v—u)on, VveEK;, 1=12, (3.1.5)
(u,v— u)w > (fiv—uwon, Vv€E K3

where
K;:={v:veu+W;/(v—a)ln, 20},

Ky:={v:veu+W;3/(v-a)l, =0}
2. Numerical Treatment.

By following the arguments in the First and Second Part, we construct the complemen-

tarity system:
Ufﬂ 2 AI{!,

Mjo =Ty U, —bse 20, i=1.2,
My =Ty 5Un—= by >0, (3.2.1)
Mpo(Uso — Ap) =0, i=1.2,

My(Us — Ay) =0
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where: Ajo is the vector {a(z,)},0; the matrix Tjo ;o 18 defined in the First and Second
Part respectively for simply supported and clamped plate. We solve (3.2.1) by the same
technique, adding a projection of [A o+ ].

Remark IV. In addition to (11), (12), (13) in Remark I, we can verify the following
relations!2%l; a

(14) V(01) = Vi + Vs, V(03) =Va+ Vs,

(15] 1:3(01) = 1‘31 -+ 1'?'3, 1;(02) = {}3 "32:
(16) W(O]_] = Wl ~+ Wg, W(Og) = Wg -+ Wg

where 01 = {1; Uw, 02 = w Uf),. We have the new decomposition {1 = O, U O, of partially
overlapping open sets Oy, O,. This decomposition enables us to construct the alternating
Schwarz method for biharmonic variational inequalities!2],

Remark V. The numerical approach to the mentioned problems remains unchanged if
the solution u € H>(Q) N W, in fact in this case v, Au|, € H~1/2(v) and a “generalized”
Green’s formula holds(3:17],

B

References

(1] H. Brezis and G. Stampacchia, Remarks on some fourth order variational inequalities,
Ann. Scuola Norm. Pisa, 4 (4) (1977), 363-371.

2] F. Breszi and P.A. Raviart, A Mixed Finite Element Methods for 4th Order Elliptic
Equations, Rapp. Interne N9 Ecole Polytechnique, Palaiseau, France, 1976, 1-312.

(3] L.A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator,
Ann. Scuola Norm. Pisa, (6) (1979), 151-186.

[4] L.A. Caffarelli, A. Friedman and A. Torelli, The free boundary for a fourth order varia-
tional inequality, . J. of Math., 25 (1981), 402-422.

5] L.A. Caffarelli, A. Friedman and A. Torelli, The two obstacle problem for the biharmonic
operator, Pacific J. of Math., 108 (1982), 325-336.

6] P.G. Ciarlet and P.A. Raviart, A Mixed Finite Element Method for the Biharmonic
Equation, in Math. Aspects of Finite Element in Partial Differential Equations (C.de
Boor Ed.), Academic Press, 1974, 125-145,

[7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amster-
dam, 1978.

8] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology, Vol. 1-6, Springer-Verla, 1985.

(9] J. Frehse, On the regularity of the solution of the biharmonic variational inequality,
Manuscripts Math., 9 {1973), 119-129.

(10} A. Fusciardi and F. Scarpini, A mixed finite element solution of some biharmonic uni-
lateral problem, Num. Funct. Anal. and Optimiz., 2 (5] (1980), 397-420.

[11] R. Glowinski, Approximations Extérnes, par Eléments Finis de Lamigrange d’ordre Un
et Deux, du Probléme de Dirichlet pour I’Ope rateur Biharmonique, Méthodes Itératives
de Résolution des Problémes Approchés, In Topics in Numerical Analysis {J.J.H. Miller
Ed.), Academic Press, London, 1973, 123-171.



360 ¥F. SCARPINI

[12]

13]
14)

[15]

[16]

[17]

18]

[19]

20}

21

R. Glowinski and G. Pironneau, Sur la résolution via une approximation par eléments
finis mixtes du probléme de dirichlet pour L’opérateur biharmonique par une méthode
“Quasi Directe” et diverses méthodes iteratives, Rapp. de Recherque, 197, 1976,

R. Glowinski, J.L. Lions and R. Tremolieres, Analyse Numérique des Inéquations Vari-
ationnelles, Dunod, Paris, 1976.

R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
1984.

R. Glowinski, L.D. Marini and M. Vidrascu, Finite element approximation and iterative
solution of a fourth-order elliptic variational inequality, IMA J. of Num. Anal., 4 (1984),
127-167.

R. Glowinski and M.F. Wheler, Domain Decomposition and Mixed Element Methods for
Elliptic Problems, In First International Symposium on Domain Decomposition Methods
for Partial Differential Equations (R. Glowinski, G.H. Golub, G.A. Meurant, G. Periaux,
Eds) Siam, Philadelfia, 1988, 144-172.

J.L. Lions and E. Magenes, Problémes aux Limites Non-Homogénes, Vol. I, Duned,
Paris, 1968.

P.L. Lions, On the Schwarz Alternating Method I, In First Intern. Symp. on Domain
Decomposition Methods for Partial Differential Equations (R. Glowinski, G.H. Golub,
G.A. Meurant, G. Periaux Eds.), Siam, Philadelfia, 1988, 1-42.

L.D. Marini and & Quarteroni, An Iterative Procedure for Domain Decomposition Meth-
ods, A Finite Element Approach, In First Inter. Symp. on Domain, Decomposition
Methods for Partial Differential Equations (R. Glowinski, G.H. Golub, G.A. Meurant,
G. Periaux, Eds.), Siam, Philadelfia, 1988, 129-143.

F. Scarpini, The alternating schwarz method applied to some biharmenic variational
inequalities (to appear in Calcolo).

G. Stampacchia, Variational Inequalities, In Theory and Applications of Monotone Op-
erators (A. Ghizzetti Ed.), 1969, 101-191.



	jcm-91-9(4)-291.pdf
	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg

	File0001.jpg

