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Abstract

We consider the singular perturbation problem
—g*u" + pb(z,u)u’ + ¢(z,4) =0, u(0),u(1) given,

with two small parameters £ and pu, g = ¢'*?,p > 0. The problem is solved numerically
by using finite difference schemes on the mesh which is dense in the boundary layers.
The cnmrerfence uniform in e is proved in the discrete L' norm. Some convergence
results are given in the maximum norm as well.

§1. Introduction

Consider the following singularly perturbed boundary value problem:
Tu := —&2u" + pb(z, w)u' + ¢(z,u) =0, z€1:=[0,1], (1.1a)
Bu = (u(0), 4(1)) = (Uo, Uh), (1.1b)

where € 18 a small parameter:
D<ce<e” €1,

and
u=e%?  p>0,

Uy, U, are given numbers. We suppose that functions b and c are sufficiently smooth and

cu(z,u) >c. >0, z€I, u€ER. (1.2)

This implies that there exist numbers u* and u, such that
e(z,u.) <0< e¢z,u*), z€l, ueER, (1.3a)
u. <U; <u*, 7=0,1 {1.38)

This means that u* and u, are upper and lower solutions, respectively, to problem (1.1).
Hence (1.1) has a solution, which will be denoted by u,. Moreover,

u.(z) e W= [u,,u*|, ze€l (1.4)
We shall use the conservation form of equation (1.1a):

Tu=—¢&*u"+ puf(z,u) +9(z,u}) =0, zel, (1.5)

* Received August 1, 1988,
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where

fae) = [ das)ds, alau) = clzu) - wha(sv)

Throughout the paper we shall assume that £* is sufliciently small. Then,
gu(z,4) > 9. >0, z€lI, ueW.

Hence, because of the inverse monotonicity of the operator (T, B), u, is the unique solution
satisfying (1.4); see [4].

Problems of type (1.1) belong to the class of two-parameter problems. The asymptotic
behaviour of linear two-parameter problems was investigated in [7], and semilinear (i.e.
b = b(z)) problems were treated numerically in {1], [2, p.251], [10]. These problems represent
models of different phenomena arising in chemistry or biology; see [1], |2].

On the other hand, numerical methods for quasilinear singular perturbation problems
with g = 1 were considered in [4]-[6], [8], [12]-[14], just to mention some of the papers.

In this paper our aim is to solve (1.1) numerically by using the approach from [9]-[12],
|14], [3]. First, in Section 2, we derive estimates of the derivatives of u,. As we may expect,
they show boundary layer behaviour of u, at z = 0 and z = 1. {Note that {1.2) guarantees
the unique solvability of the reduced problem

c(z,u) =0, zel,

whose solution, in feneral, does not satisfy the boundary conditions (1.1b).) Then, in
Section 3, we construct a special discretization mesh which is dense in the layers. We
form the discrete problem corresponding to (1.5), (1.1b) by using the Lax-Friedrichs finite
difference scheme for p < 1, and the central acheme for p > 1. For both schemes we prove
uniform (i.e. uniform in ¢) stability in the discrete L! norm. This norm is used because of
the quasilinearity of equation (1.1a) (cf. [4], [5], (8], [12], [13], [14]). In Section 4 we deal with
the consistency error using the estimates from Section 2 and properties of the special mesh.
As it was shown in [13], the linear uniform convergence of the numerical solution towards the
restriction of u, on the mesh can be obtained in the discrete L' norm even on equidistant
meshes. Here, by using the special mesh we are able to improve the L! convergence result,
cf. [14]. Moreover, numerical results, presented in Section 5, show the pointwise uniform
convergence as well. For the case p > 1 we are able to estimate the maximum error by

M(n~! + e~ exp(—mgn)),

where n is the number of mesh subintervals, and mg i8 a positive constant independent of
and n. Throughout the paper M will denote any positive constant, independent of £ and n.

82. Estimates of the Derivatives of u,

In this section we shall estimate [uik)(z]f for k = O(1)4,z € 1. Throughout the section
we shall assume (1.2) and that £* is sufficiently small. We shall use the technigue from [10].
We shall start by giving some rough estimates:

Lemma 2.1.

P (z)| < Me™*, k=0(1)4, ze€l.

Proof. Because of {1.4) the estimate for £ = 0 iz immediate. Let us now prove the
estimate for k = 1. If =z € [0,1/2] we take

z* € (z,z+¢e) C I,
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such that
lug(z”)| = |ue(z)} — ue(z + €)|/e < M/e.

Integrating (1.5) from z* to z we get
ul(z)] < Mijul(a*)] + =2 (s + 2" — )] < M/e.

The proof is similar when z € [1/2, 1].
Now the estimate for £ = 2 follows directly form (1.1a) and the other ones can be
obtained after differentiation.

Theorem 2.1. The following estsmates hold:
julf (z)| < M{1+ e *(ye(z) + 2(z))], k=1(1)4, z€l,

where
ve(z) = exp(—mz/e), z4(z) = exp(ml(z - 1)/e),

and m 13 a positive constant independent of &.

Proof. Let us prove the estimate for K = 1. The other estimates can be proved analo-
gously. Define the linear operator:

Lu:= —e*u" + pb(z, uJu' + g(z)v,

where
¢{z) = culz, ue) + bz (T, u.) + by (z, ue)ul.

Since from Lemma 2.1 we have
Bldul(z, ue)ul| < Me?, z e,

it follows that
g{z) >c. >0, zel

(note that ¢ is assumed to be sufficiently small). Thus, the operator (L, B) is inverse
monotone, and it 18 easy to check that there exist appropriate constants M and m, so that

LM(1+4+ e YHye + 2¢)] = Fez(z,ue) = L(xwl), ze I
BM(1+ e Yy, + 2,)] > B{zxul).
The inequalities above imply the estimate.

§3. The Discretization and its Stability

Let I* be the discretization mesh with the mesh points:
zi = Alt:), ti=1t/n, 3= 0(-1):1, n=2ng, ng€N,
where
w(t) .= Petf/(y—t), te€|0,a
M) = { #(6) = 8t — a)® + ()t — a)?/2+ W (a) (¢ — @) + w(a), ¢ [a1/2]
1-A(1-¢t), te1/2,1].
Here a € (0,1/2) is an arbitrary parameter (independent of &),
| v =a+el/3, (3.1)
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and & is determined from
x{1/2) = 1/2.

We have
A€ C?0,1/2], AeC?1/2,1], XecCi(l),

and because of (3.1),
w(a) = afe?/?, w'(a) = fre'/3, w'(a)=28n. (3.2)
The parameter 8 should satisfy
0<f<[29(1/2-a)|7,
which implies
§>0, ie. x3 >0,
provided &* is sufficiently amall (zee (3.2)}. Then it follows that
x# () > ¥ (a) =wF(a) >0, tela,1/2),
first for £k = 2 and then for &k = 1. Obviously,

WwF () >0, k=0,1,2,---, te]0,qa]
and taking (3.2} intosaccount we get
o< A®g) <M, k=1,2, te[0,1/2]. (3.3)
Furthermore, note the inequality:
exp(—w(t)/e) < Mexp(~M/(y 1)), t€[0,7), (5.4

which will be used in Section 4.
It is easy to derive analogous properties of the function A in [1/2, 1].
Similar mesh generating functions were used in (9], [10], [12], {14].
Let

hi =z — 21, = 1(1)n;
hi = (hi + hi41)/2, s=1{1jn -1,

Let w" denote a mesh function on I"\{0, 1}, which will be identified with the vector

h " i n—1 i sl
w =[tﬂ1,tU2,"',tﬂn_1] €ER y Wy = uwy,

and let T be the discrete operator corresponding to {1.5), (1.1b}:
T : R ! — R"1,
Thw; == (T"w"); = —eD"w; + uD' f(zi, wi) + pD%w; + g(zi, wi), v = 1(1)n — 1,

where
D"wy; = [(wimy — wi)/hs + (wip1 — wi) hita]/hs,  D'wy = (wip1 — wi_1)/(2h:),
Dﬂwi = Q(—w;_l + 2w; — w.;+1)/[2ﬁ.-), L) = {b* RS
0if p>1

and b* is given by
ib(z,u)| <b*, z€l, ueW. (3.5)

In the schemes above, the quantities wo and w,, should be replaced by Up and U, respec-
tively.
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Thus, the discrete problem reads
Thyw* = 0. (3.6)

Let || - |loo and |} - |1 denote the usual vector (matrix) norms in R"~!(R"~1*~1), Fur-
thermore, in R"~! we shall use the following discrete L' norm (cf. [13], [14}):

n—1
™13 = D Bilwil,

=1
which can be written down in the form _
o™t = |Hw™y, H= diag (hy,ha, -+, hn-1).
The corresponding matrix norm is
|Al; = |\HAH™Y|,, AeRrUm—L,

Let
Wh={uPeR"t:w;eW, i=1(1)n—1)}.

Now we shall prove the stability inequality:
et - oM < g T R - TR (3.7)

Theorem 8.1. Let (1.2) hold and let £* be sufficiently small. Moreover, if p =1 let n
be sufficiently great, but independent of €. Then (3.7) holds for any w™, v™ from Wh, and
in W” there exists a unigue solution to the discrete problem (3.6).

Proof. For the technique, cf. [2], [4], [5] (equidistant meshes) and [13], [14] (non-equidis-
tant meshes). Let

A= (T")(w") € R*~ 11

be the F-derivative of the operator T* at any w® € W’”. First we shall show that 4
is8 an L-matrix (i.e. the diagonal elements are positive and the off-diagonal elements are
nonnegative).” In the case p < 1 the D° term of T" guarantees this property, since (3.5)
holds. If P > 1 we have to fulfil

pb*hiyq, pb*h < 262, ¢ =1(1)n -1,
which will follow form
pub*h,, < 262
However, using (3.3) with k£ = 1, we can rewrite the last inequality as follows:
1 < Mnel™?,

and this is satisfied under the assumptions of the theorem.

Now 1t 18 easy to see that
(HAH )T e? > g,¢*

(componentwise), where
e =[1,1,---,1F € R*1,

This guarantees that A is nonsingular and A™! > 0 (componentwise). Thus, A is an M-
matrix, and we get

-

A7 = ((HAH™1)") " oo < gt
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Now (3.7) follows from
wh . 'Uh - ((Th)!(ah))—l(Thwh _ Thﬂh),

which is valid for some 6* € W5,
To prove that in W» there exists a solution to the discrete problem (3.6), it is sufficient

to show
Th(u*e®) > 0 > T"(u,e")

(again, these inequalities should be understood componentwise). We shall prove the first
inequality only, since the proof of the second one is analogous. For 1 = 2(1)n — 2 we have

(T*{u*e?)); = uD' f(zi,u*) + 9(zi, u*} 2 pfao(xi, u*)
—Mu/n+ g(z;,u*) = c(z;, u*) —Mp/n>0
(because of (1.3a)). Furthermore,
(T*(u*e"))s > c(z1,u*) — Mp/n + &2 (u* — Up)/(hrh1) + p(u* — Uo)(0,0)/(2hi)
+uQ(u* — Up)/(2R1) 2 0, o € [Up,u*|,

again because of (1.3), and by using the above L-shape analysis. In the same way we can

prove
"' (T (u*e"))n_1 = O.

The uniqueness of the discrete problem in W follows from (3.7).
The unique solution to (3.6) will be denoted by wh wh e W", and by u” we shall denote
the restriction of the continuous solution 4, on I"\{0,1}.

t4. The Convergence Results

The consistency-error vector is given by
rh = Thyk,
and its components are
re=r 4490 i=1{1)n -1, ¥ =[u)(z:) — D"u ()],
ri = p[D' f(zi, ue(2:)) — fl@ ue(2))azs,)y 70 = BD ue(=:).
Theorem 4.1. Let the conditions of Theorem 3.1 hold. Then we have
e/n+ p+exp(—mon){/n, 0<p<l1
||wr—ut"h£Md, d={[f [ ] ’ . ’
[e/n + exp(—mgn)|/n, p2>1
where mg 18 a posstive constant independent of € and n.

Proof. Because of Theorem 3.1 it is sufficient to prove

I”)1} < Ma.
As an illustration, we shall prove
ny—1
Y Rl < Md (4.1)
i=1

for 0 < p < 1. The other estimates can be proved analogously, cf. [9]-[12], [14].
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For : = 1{1)no — 1 we have the following two estimates:

Blr?| < Mul(hiss = ho)lud (m:)] + Ky max  [ul(a)] (42)
and
Rilr?| < Mphiyy  max ()] (4.3)

Zj-1X2LTi4]

Since we consider here the interval [0,1/2] only, the estimates from Theorem 2.1 can be
simplified:

W (@) < ML+ 5y, (a)], k=104, ze[0,1/2] (4.4)
1% Let t;_; > a. Then by using (4.2), {4.4), (3.2) and (3.3) we get
hilrd] < Mu[1+ e ?ye(zi-1)]/n* < Mu[l + e %y, (w(a))]/n? < Mu/n?. (4.5)

2° Now, let ;) < and t;_,; < vy — 3/n, so that

| 4 R t£+1 2 M("]"'—' f"_l]‘ (4.6)
From (4.2}, [4:.4], (3.3), (3.4) and (4.6) it follows, that
Rilr?l < Mu[1+ (7 — tig1) ™ exp(—M/(y — t;_1))]/n? < Mpu/n?. (4.7)

3° Finally, if v —3/n < t;_; < a, we use (4.3), (4.4}, (3.3) and {(3.4) to get
hilrd] < Mul1+ &7ty (2;-1)]/n < Mp + e exp(—M/ (7 — t;-1)))/n
< M|u + €® exp(—mgn)|/n. (4.8)

Note that there are no more than three points ¢; which satisfy case 3°. Having this in
mind, from (4.5), (4.7) and (4.8) we get (4.1}. In fact, we have obtained somewhat better

estimate — the quantity
le/n + exp(—mgon)]|/n
comes from the component r’.
Theorem 4.2. Let the conditsons of Theorem 3.1 hold. Then we have
B g Min™!' + 6P + e lexp(—mgn)], O0<p<1,
l|lwe — ug loo < { M{n-1 +E_IEIP(—ﬂ"Ioﬂ)], p %

with the same mg as sn Theorem 4.1.

Proof. Since

hi > Me/n, 1= 1{1)n,

we get
lwnlloo < Mne™ |jwall}

and the assertion follows from Theorem 4.1.
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§5. Numerical Results

Let us consider the following test example:
2y +pud’ +u—s(z) =0, ze€l, ul0) =0, u{l)=U,

where s(z} and Up, U; are determined so that the solution reads
te (z) = —exp(—z/e) + exp((z — 1)/e).

We take b* = 1. let
Eo = |0} — v, E1 = llwe —ugll]-

We shall be interested in the numerical order of convergence, both in | - [|oo and || - ||%:
Ordy {n) = (In2) " In(E (n)/ Ec (2n)),
Ord, (n) = (In 2)~! In( B, (n)/E,(2n)),

where E;(n), E1(n) mean the errors E,, E, respectively, on the mesh with n subintervals.
We use the function A with the parameters:

a=025 fg=1.

This gives the following percentage of the mesh points in the layers, represented by the
intervals {0, ¢] and [¥— ¢,1]: about 35% for £ = 1. — 2, 30% for ¢ = 1. — 3 and 25% for
e = 1. — 4 (as usual, the notation a. — k means a10%).

Table 1. Values of Ord; (40) Table 2. Values of Ord., (40)

p [ g p €
1.—2|1.—-3 | 1.—4 1.—2 | 1.-3] 1.—4
1 | 202198 | 201 1 [ 1.99 | 1.94 4 2.06
1/2 | 1.76 | 2.02 | 2.02 1/2 | 1.88 | 1.93 2.07
1/4 | 1.03 | 201 | 2.15 1/4 | 1.34 [ 193 [ 2.2
0O | 089|081 ] 0.73 0 | 0.52 [ 0.67 1.12

The numerical results of Table 1 confirm the results of Theorem 4.1, Note that for a
greater value of € the order of convergence decreases from 2 to 1, as p does. Furthermore,
the order does not decrease together with €. The case p = 0 is beyond the theory presented
in this paper.

A similar analysis holds for Table 2. In fact, the numerical results are even better than
the theoretical ones, since the uniform pointwise convergence can not be observed from
Theorem 4.2.

Finally, in Table 3 we give more detailed results for p = 1. As £ decreases, the error E,
increases slightly, while E; decreases.

Table 3. Values of £, and E,

Ti £

I 1.-2 1,8 1.—4
20 | 3.08—2 | 4.70—-2 | 8.79—2 | E
1.99-3 | 6.24—4 | 7.54—5 | E,
40 | 8.04—3 | 1.69-2 | 2.45-2
4.80—4 | 1.15—4 | 1.95-5
80 | 2.25—3 | 4.39—3 | 5.89—3
1.18—4 | 2.91-5 | 4.84—6
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The nonlinear system (3.6) was solved by the-Newton method. The iterations were
carried out until the maximal pointwise difference between two successive iterations became

less than 1.—6.
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