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Absatract

A speciral method is proposed, the existence and uniqueness of the global and
smooth solution are proved for the periodic initial value problem of the generalized
K-S equation. The error estimates are established and the convergence is proved for
the approximtte solution of the spectral method.

§1. Introduction

The Kuramoto-Sivashinsky equation
O + B2 + B, + Ppprr = 0 (1.1)

was independently advocated by Kuramotol! in connection with reaction-diffusion systems,
and then by Sivashinsky(3! in modeling flame propagation; it also arises in the context of
viscous film flowl3 bifurcating solutions of the Navier-Stokes equa.tinn["‘], etc.

Differentiating (1.1) with respect to = and setting u = $,, we get

U + (uz)z + Uy + Upzze = 0. (1*2)

In the present paper, we consider the generalized K-S equation of the form
ur + fu)z + atzy = Bugr: = glu) (1.3)
and 1ts periodic initial value problem
u(z,0) = uo(z), zeR', wu(zt)= u{z+2m,t), zeR, t>0 (1.4)

where o, 8 > 0 are constants.

We propose a spectral method for the problem (1.3)-(1.4), prove the existence of the
global smooth solution for the problem ( 1.3)-(1.4), and establish the error estimates and
convergence for the approximate solution.
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§2. The Spectral Methods and a Priori Estimates

Here we adopt the usual notation and convention. Let Q = [0,2x|, L,(12) denotes the

in 1/p
Lebesgue space with the norm [|u|z, = ( f |ui? d:r) . If we define the inner product
0

(o) = | “u(z)o(z)dz, [l = (u,u),

then Lz({1) is a Hilbert space; especially, Lo, (1) denotes the Lebesgue space with norm
iu)le., = ess sup |u(z)|. Let H™(01) denote the Sobolev space with the norm
=€}

1/2 :
lullam@y = ( 3 1D°ul2,) " orsimply fjuflm.

|a<m

Let L®{0,T; H™) denote the space of the functions u{z, t) each of which belongs to H™ as
a function of z for every fixed t,0 <t < T, and sup {ju(-,t)|m < oo.

0<t<T
Let H* (1) = {u(z)]u € H™(0), u/(z) = wi(z + 27}, 0 < 7 < m — 1} be a periodic
_ 3
functional space, where u? = j::, Sy = Span {w;(z),1 < 5§ < N} is a subspace spanned

on the basis a[w,-‘tz]}, 3=1,--+, N, where w;(z) = exp{ijz}, ¢+ = /~1L
We construct an approximate solution of problem (1.3)-{1.4) as follows:

Un(z,t) = Z 1 (t)wi(z), z€Q

where the coefficient functions «,x (t) should satisfy the equations
(Une + f(Un)e + aUnza + BUN 2222, w5) = (9(Un), w;) (2.1)

with the initial condition
Un(z,0) =Upn(z), z€N (2.2)

where 5
Uon (z) R up(z) as N — oo,

Problem (2.1)-(2.2) can be considered as an initial value problem of nonlinear ordinary
differential equations of first order with unknown functions ;5 (t). Under the conditions of
the lemmas and the a priori estimates in the present section, we know that there existz a
global solution in the interval [0, T for the initial value problem {2.1)—(2.2).

Now we make the a priori estimates for the solution of problem (2.1)-(2.2).

Lemma 1. If the following conditions are satisfied :

(i) f(s) €C, >0, 8>0, (ii) g(0) =0,¢, < b, (iii) uy(z) € Lo(N),
then for the solution Uy (z,t) of problem (2.1)~(2.2) there is the estimaie

HUN |z (0,7:L2(0)) + 1UNzzlL2(0,7:L,(0)) < Eo (2.3)

where the constant Eg 15 independent of N.
Proof. Multiplying (2.1) by ~,x(t) and summing them up for 5 from 1 to N, we have

(U.Nt + f(Ule + aUN::: +ﬁUN¢:m=: UN] = (Q(UNL UN]-
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Since

(U Un) = 510N IL,,  (FUN)e,Un) = - [ F(UN)udz =0,

P = [ " f(e)dz, (aUnsssUn) = ~aUnalZ.,

(ﬁUN::zu: UN) — _ﬂ”UN.z:l:"i,r
and by condition (ii), we have
[UH: Q(UN)) = (UN:Q(UNJ e 9(0)] < ‘;""UH"iz‘

According to the above estimates, we get

1d

E'd—t"UN 17, + BlUnzallZ, — allUn2|IZ, < BIUNIZ,.

By using Sobolev’s inequality
"“:”i, < E"“M"i, + c”"”i,

it follows that

1 - |
'-'1||UN="%., < “’-‘*’”UNH"L + ﬂO"UN"i, < ‘“ﬁ”UN-ﬂ"i, ;3 HC”UN ”i,
»

; . 1
where € 18 80 chosen that ae < —z-ﬁ. Hence we have

d £
E"UNHE, T E”Uﬂunig = “C”UN”%.: * b"UN”i:'
Therefore, by using Gronwall’s inequality, it follows that
IUNIE, < el>+0T Uy ()13, < B3,

B [T »
% | Wowael,ae < (a0 +) [ JUwIE,de + 10on I, - NI,

< (aC + ) EQT + |Uonlf, — B < E.
Take Ey = max{FE;,2E{/B), and the lemma has been proved.

Lemma 2 (Sobolev’s estimates)[®l. Let D™u € L,(Q), u € L, (1), O C R™. Then, there
13 a constant C such that

1D ||, 0y £ CID™ulE, () lull; i)

where

1 ‘ 1 1 i
=L 14(--2)+(1-a)-, 0<i<m, 0<a<i.
P Tl r n g

Lemma 3. Suppose that the conditions of Lemma 1 are salisfied and assume that
(i) fu) e C%, |f(u)| < A(v)?+ B, 4,B>0, 1<p<T,

(i) uo(z) € H(N]).
Then for the solution of the instial value problem (2.1)-(2.2), there 13 the estimate

|UnzllL=(o.r;La(a)) + UNazellLa(o,miLa(0)) < Ei (2.4)

where the constant E, is independent of N.
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Proof. Because —w}/(z) = A;w;(z) and (2.1), it is known that

(UNt &5 f[UN]:: + alUnzz + fUNxzax, —tﬂ;!(I]) T~ [g[UN): "w;f(x))-

Multiplying the above equality by 7;(f), then summing them up for 7 from 1 to N and
setting Vy = Uy, we get

(V.H’t + f(UN)z:n T ﬂVN:: + ﬁVN::::rVN) s (9"(UN)VN: VN)' (2-5]
Since
1d 2 174 2
[VNHVN) e EEE”VN"L,: [aVN:z:VN) = _ﬂ" Nz |L,:

(BVNzzaz, Vi) = Bl|Vizel2,, (¢{Un)Vw,Vu) < B|IVN3,,
[f(UN)u:VN) = (f(UN):VNmz) < “f[UN)”L: ”VN::"L::

by condition (1) of this lemma, it is known that

1 (Un)lL, < A|UN]IE,, + B-

By Lemma 2, we have
1UN L, € CNUNzaslIE, 1UNNE, "

1 1 1 ‘ it | .
whereE;u(%*3]+(l—a)§-=§—3a. Takmgup—pﬁ < 1, that is p < 7, we have

17O lzs < CllUNseallts® +Cr < ElUNasallza + €Ly 6> 0,

Hence

B
|(f(UN]H:VN]| < %IIVNHIIE, +Cl||VN=:=”L: < '§||VN==="%, + Ca.

Furthermore, p
Vel < EViasllE, + CsllVi I,

Thus from (2.5), it follows that

1 d 8
- ZIVNIZ, + S WViealZ, < (Cs+ 8)IValE, +Ca.

Finally, by Gronwall’s inequality, the estimate (2.4) is obtained.
From Lemma 3 and Sobolev’s estimate, we have
- Corollary.

sup_|Unllw(m) < Bz (2.6)
0<t<T

where the constant E; is independent of N.
Lemma 4. Suppose that the conditions of Lemma 3 are satisfied, and assume that

(i) f(u) € C™*2, g(u) € C™*1,
(ii) uo(z) € H™1(N), m>1.
Then, for the approzymate solution of problem (1.3)-(1.4), there is the estimate
g;EET ”UN[’ | zrmes + NUn () lLago, 7 mes) € B (2.7)

where the constant E,, is dependent on ||ug(z)||gm+1(0) -
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Proof. By using the inductive method and the a priori estimate method analogous to
Lemma 3, the estimate (2.7) is easily obtained.

From the uniform estimation for the norm of every term of the approximate solution
Un(z,t) with N terms and compact argument, similarly to the proof in [6], we have directly
the following theorem.

Theorem 1. If the following conditions are salssfied:

(i) f(u) €C**" and |f(u)| < AlulP+ B, 1< p< 7, 8>0,
g{u) €C?, J{u)<b, b>0, s>1,
(ii) uo(z) € H*(Q),
then there exists a global solution for the initsal value problem (1.3)-(1.4):
u(z,t) € L=(0,T; H*(0)).
By means of the method of energy, we may easily prove the following theorem.

Theorem 2. If f(u) € C?, glu) € C1, then the global solution of problem (1.3)-(1.4)
15 unIgue.

§3. The Errdr Estimation of an Approximate Solution by the
Spectral Method

For a periodic function u(z, t), setting

N
un(z,t) = Z pin (t)w; (=),

which represents the sum of N terms of the Fourier series for u(z,t), we have the following
lemma.

Lemma 5!7. For any real number 0 S 4 < o and function u € HZ (), there 13 a

constant C such that
|# — unlly < CN*||ulf,.

Taking the inner product of (1.3) and w;(z), we have

(ve + flu)z + auz, + BUzzze, wy) = (g{u), w;). (3.1)
Then again by (2.1)
| (UNt + f(UN]:I: < ﬂUN:: i ﬁUN;t::::wJ'] = (QIUN): wj)- (3.2)

Set ¢ = U~ uy, ¥y =Upy — txy. Then,
U—Un=(v—un)— (Uy —uy) =¢n — Op.
Subtracting (3.2) from (3.1), we get
(Une +a¥nas + B¥Nanze, w;) = (Nt + aengs + BN zzza
Hf(u)s — f(Un)z] — [g(u) — g(Un)}, wy). (3.3)
Take

Yy = Z: 75 (¢)w;(z).
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Multiplying {3.3) by 7,(t} and summing them up for 5 from 1 to N, we get
(th +a\I’N:: +- ﬁw.ﬁ:xz:: ‘I’N) == [th + X(Nzz + ﬁ;NI:I::I::I:
+f{u)e — F(Un)a] — [9(v) — g(Un)], ¥n). (3.4)

Since

(o) ~1Un)e = 1f(0) = 1N} = [ [ folou+ (1= 2)Uw)asion - Wn)
= [ Flowa + (1= Una)dsln — ¥}

1
+/ fulzu + (1~ 2)Un)dz{inz — ¥n.)
0

1

o() ~gluw) = [ d\eu-+ (1~ 2)Un)dslow — )

from lemma 5, it follows that

lsnelle, < CNT|wel,, uwe € Hy(Q), {¢Nezlle, € CN*7|ufl,.
Hence by [3.4],;&'& have

1 & .-
5> ZNUNIE, — all¥nalf, + Bl¥nazl?, < llswellza 1¥nllz, + alisn o, | ¥z,

+BlewallLa [ ¥naslles + | f;(f:.):dz“L;("gN”L: 1@l + [¥n]2.)
+| /: fadal],_[Jewelzabnlle, +| [ (fo)sdlza 212,

+ [ e, (lowlla ¥y + ¥ ],)

Therefore,
12, + S lenelt, < Cllwn + N2
It implies
[¥wllz, = O(N*7").
Hence

lu — Unliza(ny + ||v — Unllago, a3 () = O(N*").

From the above discussion, we obtain the following theorem.
Theorem 8. If the following conditions are satisfied:
(i) u{z,t) is a solution of problem (1.3)-(1.4) and
ue € L0, T; Hy(0)), uo(z) € H (), r>2,
(ii) f(u) € C?, g(u)} e C.
then for an approzimate solution of the spectral method, we have the following error estimate:

|u — UnllLa(a)y + | — Un|lao.z:m2(0)) = O(N?~7).
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§4. The Discrete Spectral Method

For the discrete spectral method we consider the difference quotient
_ UNf'ﬂ.‘, t] = UN(I,t = ﬂt)

U
. NE At
S— ; . : £
which is approximate to Uy, where At is the step of time ¢, = nAt, n € [{], [:ﬁ_t]] . Then,
problem (2.1)-(2.2) becomes
(URF" +F((UFH + UR)/2)= + aUREL + BURLS .o w))
| ;
e (g(E(UFfFI—*—U;))IwJ'): 1=12,---, N, (4.1)
Un(z,0) = Up(z), ze€, (4.2)

2
wher Ugn (z) H—"{"E]ﬂg(ﬂ:), as N — oo,

We have the following theorem.

Theorem 4. If the condstions of Theorem 3 hold, then for the approzsmate solution
Un(z,t) of problem (4.1)-(4.2), there is the estsmate

. lu — Unllza(0) = O(N*"" + A%
where u(z,t) ts the smooth solution of problem {1.3)—(1.4).
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