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A MODIFIED MACCORMACK’S SCHEME"®
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Abstract

In this paper a modified MacCormack’s scheme is presented. The scheme is based on
flux vector splitting. The test computations show that the proposed modified scheme
produces much better numerical results than original MacCormack’s scheme.

§1. Introduction
o

A numerical flux function plays a very important role in solving hyperbolic equationa
of conservation laws by finite difference methods. The first order accurate numerical flux
scheme may be most dependable in providing solutions which are free of computational
noise, but it possesses sufficiently large dissipative trunction error so that discontinuities are
smeared out on grids.

The higher order numerical flux schemes!® 7] possess the peculiar property that nonphyaz-
ical ‘bscillations in the solution can be generated in the vicinity of steep gradient regions!!2l,
This computational noise may degrate or destroy the accuracy of solution. Undesirable
physical features of the simulated flow such as negative masses or energy densities may
develop in solving gasdynamic equations.

As a consequence, the development of higher order monotonic or TVD numerical schemes
has continued. Some examples of these schemes are in [1,2,10]. In these schemes nonlinear
filtering techniques are used for higher order numerical algorithms. In general, constraints
are imposed on the gradients of the dependent variable [9] or on the gradients of the flux
functions [4] in these algorithms. This technique effectively removes computation noise from
steep gradient solutions.

A modified MocCormack’s scheme is presented in this paper. The algorithm is based
on flux vector splitting {8 for systems and the flux limeter may be treated in a relatively
simple and convenient way. The test calculations show that the numerical results are of

higher resolution.

§2. Description of The Algorithm

In this section we will briefly describe the general algorithm. A modified MacCormack’s
scheme is described in the next section.

* Received August 13 1988,
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To illustrate the basic notion we consider the numerical algorithm for a one-dimensional
system of conservation laws
oW oF(W) 5
ot Az ’
where W and the flux function F(W) are m-component column vectors.
Now computing z-spatial is divided into cells of equal width, Az. We take W at the
center of the jth cell. At time nAf, these variables, W?, are known on the cells. The

nb_]ect.we 18 to compute the dependent variables one time step later, W""’l The algorithm
18 accomplished as follows

Step 1. The predictor solution is calculated at (n + 1)At using a first order accurate
scheme for computing the spatial derivative in {1)

(1)

. Wy=wroa(FrL - F), (2)
where A = —it and F nf +3 13 a first order numerical flux at the boundary between the jth
T

and (7 + 1)th cells. An example of a first order scheme is the upwind method [3]. This step
should not introduce ripples into the solution.
Step 2. An anti-diffusion flux is calculated

» a — nh i 4
:‘+1}"'Fj+§ Fn+1' (3)

where F“h* 15 a higher order approximation to the spatial derivative in (1). The solutions

computed by the higher order flux, F™*, , contain ripples.

i+ i)
Step 3. The predictor solution whlch is monotonic, W, and the higher order flux are
used in conjunction with a nonlinear filter to obtain the resulting solutions at time (n+ 1} At

Wrtl = W; — MEZ ) ~FP4), (4)

The objective is to control the flux , ¢ | | in and out of cells so as to decrease the diffusion

+.I..J'
introduced by the first order scheme Here + 3 is adjusted as follows

Siti nun[ct]F+§| | 1+=I| a|FE 11_|] when
Foli=a S;4+y = Sign(F7, 1] = Sign(F: ,] = Sign(F;_ ) (5)
0, otherwise,

where o 1s a constant between 1 and 2. From (4) and {2) we can gee that the scheme is of

higher order if F et = F “+ 1, and it is the first order scheme (2) when parameter o = 0.

Using the algnrlthm descnbed above we have constructed some schemes already. One of
them 18 a modified MacCormack’s scheme in the next section.

§3. Modified MacCormack’s scheme

As well known, MacCormack’s second order schemel”! for the one- dimensional system
of conservation laws (1) is

W;=W?> -~ X\FF - F* ), (6.1)
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. S O 2

WPt = (WP + W) = 2 (Fo - Fy), (6.2)

where F; = F(W;). The predictor (6.1) is an upwind scheme. Its necessary local atability
condition is that all the eigenvalues of the Jacobian matrix 4 = ngV ) are positive.

The corrector (6.2) can be rewritten as

WJP+1 =W; - —(F:+1 — Fn F‘ +Fr,), (7)

S

and then the anti-diffusion flux can be written as

Fivy = Fiy1 - F7. (8)
Therefore we obtain a modified version of MacCormack’s scheme
W; = WP — MFP - F2)), (9.1)
Wit =Wy — S(Fgsy — Fioy) (-2
, Fiy = Fyy1 — FP, (9.3)
;.‘_f_& = the same as right of (5) . (9.4)

when all eigenvalues of the Jacobian matrix A are positive. In the case that all eigenvalues
of A are negative, the modified MacCormack’s scheme can be written as

W, = WP — A(F", — FP), - (10.1)
Wt = W; ~ (FM% ~Fg ), | (10.2)
Fioy=Fi— Fhy, (10.3)
Fr v} = the same as right of (5).  {10.4)

By virtue of (9) and (10), the flux vector splitting scheme by Steger and Warming {8}
can be used so that a split version of modified MacCormack’s scheme can be written when
the eigenvalues are of mixed signs. The split version ia

W; = WP — M(FH)F = (FH)7_, + (F7 )2, - (FO)3), (11.1)
Wil =W, — --( AR a1 (11.2)

J+} e F:r-'-H 2 (F+]: =+ F- (F_)?+1: - {11.3)
Fi{; = the same as right of (5). | (11.4)

In the scheme {11) F* and F~ are subvectors so that F is aplit into two parts

F=Ft4+F-, (12)
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when the nonlinear flux vector F(W) is homogeneous function of degree one in W. F*t

corresponds to subvectors associated with the positive eigenvalues of A and F~, the negative

eigenvalues. The detailed derivation of this splitting F = F+ + F~ can be found in [8].
According to linear stability theory, the necessary stability condition of the scheme (11)

is
mf.x I’JEA| ﬂ 1, (13)
where ax(k = 1,2, --, m) are the eigenvalues of the Jacobian matrix A.

§4. Algorithms for Two Spatial Dimensions

Splitting the spatial operators, we can extend the method described above to the two-
dimensional system of conservation laws

aw i oF (W) 5 aG(W) (14)
ot o0z dy
By that we mean th4t we solve the following equations alternately:

W  IF(W) '
— =0, el
Ot ™ oz Y (B
aw  aGw)
Ty % 3y (15.2)

Let W, be the numerical solution at ¢ = jAz, y = kAy, t = nAt, with Az the mesh
size in the z-direction and Ay the mesh size in the y-diriction. Also let F» A and G* it

be the numerical fluxes in z- and y-direction, respectively. The modified MacCormack’s
scheme can be implemented in two spatial dimension by the method of fractional steps as
follows:

77 n At a -

WJ-,k = Wik ﬁ."‘.. {F+)J o (F+)j 1,k F (F J-I-l I (F ):k]:

Wt =wr — Dtp F = L.W"; 6.1
nk = 2k o 2&3( J'-i-:},k _ j—-%,k) — H2¥V 2 k) (1 5 )

T7 % & At ® s« — 3% —_y
WJ'J# = ¥k E;[(G-'-)j,k - (G+)j,k-1 + (G ]_f,k+1 - (G ]3‘,1:]:

n i7" At | At
wrrl =w:, Mw(fi;'ﬂ,,dri.F ~Gjx_3) = LW, (1.6.2)

That is
Wit = LyL.W},. (17)

)

The fluxes F j+ 1.k and Gy L are written as follows
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Fit .k = iy 4, max(0, min(S,, y @A FP s ar JAFD L 1S4 g saAFT
AFL 4w = (F )y + (F)2 = (FH)2, — (F )
Si+yx = Sign(AFP, ), F = F(Wm);
Cinry = (Sjnry max0,min(S;5, 4aAG 4, [AC 40 11,80 jaAGT, L)),
AG; 4,y = (G¥)iass +(G )5 — (6*)5 - (C7)
Sj,k+} = Siﬂ“(&aj,k+}): G* = G(ﬁ”]-

W
5. k41

In order to retain the original time accuracy of the method, we use the following fractional
step operators

Wit = L,L,L,L.W?,. (18)

§5. Numerical Experiments for approximation to
Euler equations of gasdynamics

In this sectiof results are presented for the numerical solution of the Euler equations of |

gasdynamics. In one-dimension the Euler equations of gasdynamics can be written in the
conservation law form (1), where

P 2m
W=1Im|, FW)= "'n;— +p , {19)
E m
(E + p) -
p=tr-0(E-T0) (20)

here p, m = pu, p and E are the density, momentum, pressure and total energy, respectively.
u 18 velocity and + is the ratio of specific heats.

IF(W) .

The Jacobian matrix A = S easilly computed as

0 1 0
¥ — 3}u?
A= ( 2) (3 —7)u -1 1. (21)
E — 1)}y*
_— 1Eu  4E  3(y— lu -
P p 2
The eigenvalues of A are
@ =%, G2=u+c, a3=u-—oc, (22)
here ¢2 = 1P is the local sound speed.

p
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We can readily verify that the nonlinear flux vector F(W) in (19) is homogeneous function
of degree one in W. subvectors F* and F~ required in the scheme can be found in [8].

2(y — V)af + a3 + a3

pro 2| ot 1uet 4okt +adlu—c) 23)
2 + + ’
(v — l)atu® + %—[u +¢)? + E53-[“ -+ X
where 4 i
¥ (3_7)(0‘2 +ﬂ3)ﬂ (24)
2(y-1) ’
and | P & _
af o M2 155 te, k=123, (25)

2

where £ > 0 is a parameter.

Some examples are given here to illustrate the performance of the proposed modified
MacCormack’s scheme. In numerical tests for one dimension the results are compared to
the exact solution. The numerical values are shown by circles. The exact solution is shown
by a solid line. In these examples the parameter & = 2 is chosen.

(I) In one dimen%ion the test example is the shock tube problem whose solution belongs
to the Riemann problem. The initial conditions are given as follows:

5 1
Wi = 0 ,0<2<35 Wp= 0 , 38 <z <70 1=§.
0.6 0.12

The solution for ¢ > 0 consists of a shock wave travelling to the right followed by a contact
discontinuity and a rarefaction wave. The density and energy are discontinuous across the
contact, while the velocity and pressure are not. Comparison to the exact solution is made
at time ¢ = 60 in Fig. 1. The calculation was performed under At = 0.75 and 140 cells.

In Fig. 1la-b we show the results obtained by the scheme (11) with € = 0.05, and by the
scheme of flux vector splitting [8], respectively.

In Fig. 2 we apply the scheme (11) to a different set of data for the Riemann problem:

0.445 0.5
Wr=1] 0311 | ,0<z<8 Wpg-= 0 , 8< <14,
8.298 1.4275

and v = 1.4. The example is taken from [2]. The calculation was performed with 100 time

steps under At = 0.02 and 140 cells.
In two dimension the Euler equations of gasdynamics can be written in (14), where

rr n
m? ms
i p
W = . F(W) = rin . GW) = n? : (26)

p
m
r mn n°
p p
E (E + p)m (E+ p)n
P p
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* (m? + n?) - ;
with m = pu, n = pv and p = (y — 1) (E - 27 ) The primitive variable of (26) are
density, velocity components u and v, and pressure p. The engenvalues of A = Bl;'ng ) and
o _ 9G(W)
W e
h=fi=u, fa=fhi+e fa=hH-—c,
and

g1=@g2=4v, gzs=g1+e¢c g4=0g —¢.
The subvectors F+ or G+ can be written in the following form:

2(v — 1)af + aF + a

b 8 2(y — uaf + (u+ cky)at + (u — cky)ad ( ']
il , 27
29 2(y — Vvat + (v + cky)ag + (u — cky)a

(v-1)(e* +v3)atf + 21+ 22+ X
where
Zy = 0.5a5 [(u + cky)? + (v + cky)?|, Z; = 0.5aE[(u~— cks)? + (v — cky)?

and

_ B=1)(a5 +aF)c?

2(v—1) '
The flux subvectors F* are obtained from (27) if k; = 1, k, = 0 and a* = 0.5(fx + |fil|)
(k=1,2,3) are inserted in (27). Likewise, G* are obtained from (27) if ky =0, k, = 1 and
a* = 0.5(ge + |gx|) (k = 1,2, 3) are inserted in (27).

X

(II) The first test problem for two dimension is a steady state flow ~f air (v = 1.4)
through a duct containing a step. Initially the flow is everywhere to the right at Mach 3,
with 4 = 14, p = ¢ = 1. The duct width is 1, its length is 3, and the step of height 0.2
18 located a distance of 0.6 from the entrance. This problem has been used by Harten!?l
van Leer!*®l Woodward and Colellal'!l, Li Yin-fanl®l and others. The results in Fig. 3
were obtained with a uniform Cartesian cell with Az = Ay = 0.05. At the exit an outflow
boundary condition is applied. The complicated system of shock reflections, rarefaction
waves and contact discontinuities are presented at t = 4.

The second two dimensional test problem is an unsteady problem whose geometry and
initial data are shown in Fig. 4a. The shock wave is located on a step which is a distance of
3.75 from the left boundary and its height is 0.75. At the right boundary inflow is applied.
All the results were obtained with a uniform Cartesian cell with Az = Ay = 0.05. The
density contours at ¢t = 0.52, 1 and 1.52 are shown in Fig. 4b ,c and d. The shock regular
reflection and Mach rarefactions are presented.
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