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EXTENSIONS OF THE KANTOROVICH INEQUALITY
AND THE BAUER-FIKE INEQUALITY"!

Sun Ji-guang
(Computing Center, Academia Sinica, Beijing, China)

Abstract
This paper proves a Kantorovich-type inequality on the matrix of the type

! (QFAQQIAQ:+QT'47'Q1Q7 4Q)),

where A is an n x n positive definite Hermitian matrix and Q) is an n X m matrix with
rank (@) = m. The result is applied to get an extension of the Bauer-Fike inequality

on condition numbers of similarities that block diagonalized matrices.
»

Let A € IR™*® (the set of complex n X n matrices), and let z;, w; be right and left

eigenvectors of A corresponding to the eigenvalue A;, l.e.,
Az; = Ajz;, wa = A_,—wf.
Define
|wy 23]

| zillzllwsll2”
where #(2;, w;) denotes the angle between the one dimensional linear subspaces R(z;) and
R(w;) spanned by z; and wy, respectively. Moreover, suppose that Z,W € €"*" satisfy

8; = cos B(z;, wy) =

WHZ =1, WHAZ= diag (A1, ) 2n); (0.1)

and let
kz(A) = inf [|Z]2(|27" |2, (0-2)
where || - || denotes the spectral norm, and the infimum is taken with respect to both

matrices Z and W satisfying (0.1}.

It is well known that if X; is a simple eigenvalue of A, then s; is uniquely determined.
Bauer and Fike [1] and Wilkinson [9] proved that the quantities 3; and x2(A) give some
measures of the sensitivity of the eigenvalues to perturbations of the elements of A, so 3;
and x3(A) are called condition numbers of the eigenvalues of A.

The condition numbers s; and x2{A) are related by the Bauer-Fike inequality!!]

1 1 1
B_j < E(EE{A) | EQ(A]]* [0'3)

This paper will give an extension of (0.3).
Suppose that I, -, X, are linear subspaces of £, and

cr=X @ - @X, dim(L;)=m; V. (0.4)
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Letl3l
yJ'=Dr£L! j."—“l,"',l', (05]

kml
kot

where X' denotes the orthogonal complement subspace of X; in €™, Obviously,

dim (Y) =m; Vi, V1@ @Y, =C" (0.6)
Take matrices X, Y; so that the columns of X, Y; form orthonormal bases of Ly, Yy, re-
spectively. Since (X, --, X,) and (Y3, -, Y.} are nonsingular n X n matrices, and

(Yll Sl }:')H(Xll LB :Xr] = diag (YlHXIl R rY;-HXr]:

the matrices };H X; are nomsingular. Define
8(X;,Y;) = arccos( XV, YH X;) > 0 (0.7)

and -
S; = “ lcos 8(X, r;-)]“” , (0.8)

where || - || is any unitarily invariant norm, and © > 0(> 0) denotes that © is a positive
definite (semidefinite) Hermitian matrix. Especially, S; will be written as SF) or S}-F) if we
take the spectral norm || - ||; or the Frobenius norm || - || in (0.8), respectively.

The author [7] has proved that if X is an invariant right subspace of A corresponding
to the semisimple eigenvalue A; of multiplicity m;, then the quantity 3;1 gives a measure

of the sensitivity of the eigenvalue A; to perturbations of the elements of A.
The symbol R(-) stands for the column space. Let

F o {Z =i Babtat L G (le A Zr); Z_.,' e Cﬂxmj’ R(ZJ) — I,-}, ([}_9) .

and let

%2 = juf [|Z]a)l 22 (0.10)

The Bauer-Fikerinequality (0.3) has been extended by the aunthor in the form ({7, Theorem
3.1))

1 VAL 1 |
S[F) < > : (Hg + E—E") [0.11)
p

In this paper.we shall give the following extension of (0.3).

Theorem 1. Let Xy, -+, X, be linear subspaces of €™ satisfying (0.4). Let Y1,---, Y,
be defined by (0.5), S; by (0.8), and s; by (0.10). Then
1 ] 1

S(ﬂ] < 2(52 o E), g=1,--,r. (0.12)
p

We can prove that inequalities (0.12) are equivalent to a result of Demmel [2] (a proof
of the equivalence will be given in Appendix). We shall prove inequalities (0.12) by using a
Kantorovich-type inequality stated in the following theorem.
Theorem 2. Let A € C™*™ be any positive definste Hermitian matriz with the esgen-
values {w;} satisfysng |
0<i<w,<- <w <L (0.13)
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Further, let @, € C**™ and rank (Q,) = m. Then

1 H H ;-1 H =i H (L+0)?%, g2
§(Q1 AQIQT AT Q1+ QU AT Q7 AQu) < — (@1 Q1) (0.14)

We note that, for the special case m = 1, inequality (0.14) is the Kantorovich inequality
(see [5, p.83]). Some extensions of the Kantorovich inequality have been made by Greub
and Rheinboldt, Strang, Bloomfield and Watson, Knott, Khatri and Rao (see [68] and the
references contained therein).

In the following we shall give proofs of Theorem 2 and Theorem 1, respectively in §1 and
§2. In §3 we shall give another generalisation of the Kantorovich inequality.

§1. Proof of Theorem 2

Decompose A = UHQU, where U € €™*" is unitary, and = diag (w1, -,wn). Let

U; = UQ,. Then the inequality (0.14) can be rewritten as
’ |

(L + 1)?

4Il (U]}.:IUI)E* (1*1)

L uiauuFam v, + UF T U a0 <

Let U = (v1,-,vs). Then (1.1) is the following inequality:

%(i@iﬂiﬂf ‘ i :};Uiﬂf +z“: ﬁﬂil’ff ’ Zn:w;u;uf) < (L‘!'Ef]z (U{I'Ul)ﬂ‘ (12)
+=1 - 1i=1

=1 1=1

1

H

QObviously, we only need to consider the case of L > {. Following the way stated in [4]
we prove inequality (1.2) as follows.

Let
1 s Y X
w; = L + Iy, w—i=%+T‘, t1=1---,n (1.3)
We get
i, %i20, pit¥; <1, 1=1,,n. (1.4)
Further, let
n n |
d = E piﬂiﬂf, V= Z‘lﬁ;ﬂgﬂf. (1.5]
=1 i=1
Then
>0, ¥v20
and
n n
0<D+U =" (e +)uvy <) _wvi =07V (1.6)

=1 1=1



Extensions of the Kantorovich Inequality and the Bauer-Fike Inequality 363

Substituting (1.3) into the left-hand side of (1.2), and uaing (1.5), we obtain

H = [Z(Lw-. + el -3 (E

=1 i=1

+Z( Lok P Z(L¢+I¢,)u, ]

1=1

=3 [(L(IJ' + I\P](Z@ +7¥) + (7@ + ?w)(m +19)]

— (8% +¥7) + l(i + 2)(@U + ¥9)

(L -
2L

= (®+¥)% + ) (BT + TD). (1.7)

Since
2(P¥ + ¥®) < (@ + ¥)%,
from (1.7} and (1.6), we get |

(L - £)2 [L+ 1)2

. H<|1H

](@ ¥)?
Hence inequality (0.14) holds.

(U U,)2.

§2. Proof of Theorem 1

The symbol A(A) will be used to denote the set of the eigenvalues of a matrix A, and
Amax(A) the maximal eigenvalue of A if all the eigenvalues of A are real numbers.
Before the proof we cite the Bendixson theorem (see [5, p.69]).
Bendixson Theorem. Let A € C"*" A(A) = {a;}. Moreover, let
H H
n_ A+ A e A—:4 =y
2 21
and let A(B) = {8,}, A(C) = {v;}. Then

min{fk} < Re (a;) < max{fx}, min{y}< Im (a;) < max{ye}, F=1, --,n.

The following result is a simple corollary of the Bendixson theorem.
Lemma 2.1. Let A> 0,B > 0, and let

NAB) = () MEPE2E) - ),

Then
n'lklﬂ{pk} < ’\.T' < mf‘x{’-‘"k}: J =1,--n

Proof of Theorem 1. Let Z = (Z,, -, Z,) be any fixed matrix of Z with Z; € C™*"™vj,
and let

W= (W, - W)=2¥ W,ecr*m vj
Further, let : 5
Xj = Zj[Zij)_i, Y; = WJ'{WJHWJ']_%r 1=1,:,r
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Then
R{X;) = X, R(Y:f) =Y,

and

Xij,:l";ﬂlf;:]'{mj}] J"=1,"',T.

By the definition of S}z) (see (0.7} and (0.8}), we have

s = vy Ex)}| = \[(z22,) 2 wEw;) (2] 2,) t] L |,
[z wawyzzz )}, - @ znwewzrzp]). oy

Let
E; = (0,--,0,1m) 0,--, 0).
mhy my—1 Myt sy

Then Z; = ZE;,W; = WE;. Decompose Z" Z = UHEQU, where U is a unitary matrix, and
1 =diag (wywp), 0<wn < Swiy.

Then .
wHEwW = (2¥ z)"' = UHQ~'U.

Further, let U; = UE;. Then Uf U; = I'™s), and from (2.1) it follows that

s = ” (2F z;)twWEW;(ZF 2;)3 |2 = “(Ufnvf)*UFH_IUJ'(UJE“U")*Ha

= dmex ((UF QU RUR QU (U OU;)}) = Anae (UF QU;UFO71T;).
By Lemma 2.1,
S £ dyna (% [v¥av,uFa-tu; + vFa~vUF avy]).

(@) _ (witwa)® [1(I [wy fﬂn)r
55 s dir iy, 2\V ¥n TVa)]

By Theorem 1,

l.e.,

-1 1 1
s < (121012722 + : (2.2)
5 SR (" "2 " "3 ||Z||2||z_1"2)
Observe that 7 + 7! is a monotone increasing function for 7 > 1. Hence from (2.2) we get
(2~ . . 1 i 1
s < ing {50210k + =)
1 1
= —{ inf | Z||2}1Z7 |2 + - —
3 (121127 + S )

1 1 :
=§({52+E), 1=1r

This completes the proof.
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Remark 2.2. Inequality {0.11) can be proved by applying Theorem 1. In fact, using
the notation used in the proof of Theorem 1, by (0.8) we have

S = |(XEGYEX) |, < vy |(XFYYE X)),

(F)™* mj{ws +wa)?\ ¥ _ My [y Yo
SJ E ( 4{#1&1“ ) B 2 ( W * wl)
o 0L =11 !

Hence inequality {0.11) holds.

By (0.12) we get

§3. Another Generalization of the Kantorovich Inequality
Now we give another generalization of the Kantorovich inequality.
Theur'emas.l. Let A € €™*™ be nonsingular with the singular values {o;} satisfying
O0<i€Lo,<---<0; <L
Further, let P;,Q, € C™*™ and PF P, = QfQ, = I™) | Then

(L + 1)?
4L1

%(PIHAQlQ{IA'lPl + PHEAHQ,QY A% P) < 7tm), (3.1)

Proof. Assume that A = UV ¥ is the singular value decomposition of A, where U,V
are unitary matrices, and £ = diag (o1, - -,0n). Let
U, =U%p,, Vv,=vVHQ,.
Then UHU, = VHV, = I, and the left-hand side of inequality (3.1) can be rewritten as
1

= E(U{" svVED U, + U S~V VF ED, ).
Further, let
Uﬂz(zlm'“:zﬂ): V1H=(w11”‘!wn)!
0','=pr,.'+ltb,;, : _pi | ¢i: i=11"'1"‘:
T L l
Py = diﬂ.g ('Pll AR ':‘F’n): Vo = diag ('ﬁl: T 1¢n)
and

@"'—_UIH'I){]VI, W=UF‘I’0V1
Then we have

Do, Vo >0, Bo+ Vo< IM
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and

%(Emz.wﬂ E ——w,z + E —z.wH Za,w, )

g==1 ixl 1—1 =1

= L[St + )z Z( LOW

=]
£ 308+ Y Y (L + e
=1 t=1

= - lon  lyn 1 1 H H
= s[(Le+ 1w)(7 0% + 1w )+ (3@ + TO)(LOH + 194)]

= QP? + WVH 4 %(i+ EJ(QII'H + ¥ oH)

(L -

=7 ] (PVH + ¥dH). (3.2)

= (& + V)(®+ V)7 +

Since
2(9¥" + ¥or) < (o + ¥) (@ + ¥)¥,

it follows from (3. 2) that

(L - I)2
4L

(L + 1)’
4L

H<(1+ (® + T)(® + ¥)7. (3.3)

Observe that
(@ + ¥) (@ + )7 = Uy (Do + Wo)ViViT (B0 + o) U, < 1),

hence from (3.3) we get

)(® + U)(® + W)

(L+1)?

(m)
4L1 B0

H<

This proves inequality (3.1).

From Theorem 3.1 we get the following corollary immediately.

Corollary 8.2. Let A€ C"*" be as in Theorem 3.1, and let p;, g1 € €™ with ||p,1 |5 =
|]q1 ”2 = 1. Then
(L +1)?

R H —~1 <
e (pY Aqugi A p;) < 7]

§4. Appendix
Let Z = (z,--+,2,) € Z2,Z; € €™"*™i and R(Z;) = X; for j = 1,---,r, where I, are
defined by (0.4). Further, let
X;=2;(2Fz;)"%, X=Xy, X5-1, X1, X)), Xo=X;(REX),

and define
#; = arccos “Xf)l'}"n . LR (4.1)

Demmel (2| has proved that the inequalities

cscﬂ_,-+- csc2d; — 1<Kz, 7=1,---,r (4.2)
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hold.
Now we prove that inequalities (2) and (0.12) are equivalent.
First of all we prove that the relations

1 :
F}—=cs¢0¢,‘, i=1,---,r {4.3)

)
hold. Without loss of generality we may consider 5 = 1. Let 2m; < n. By [7, Theorem 1.1]
and the invertibility of the matrix (X;, X}), there are unitary matrices Q & cnxn U, €
C™Xm1 and Ul € ¢(n—m1)x(n—m1} guch that

I my r 0 my
0 n— 2m 0 I n—2m
QX U, = 0 . g Q..YiU{ = b 0 my ' : {4'4)

m;
mi m; n— 2my
where
I'= dia'g (’Tll‘ o '.l‘Tml)l L= diag (ﬂ']_, o 'lﬂml)l
and
012 20m, >0, 0K <<y, of+93=1 j=1,-r
»
Let
X=(X,X]), W=X¥"=(W,W]), W,egrxm™ (4.5)
and let
Y = R(Wy).
Then it is easy to verify that _
r
Y= ) X&
k=2

Further, let
Y; = Wy (WHw,) -+

Then, by (0.8)

1 -1l _ |l xHy vH y.y-4
5 Jlecs 000, 7)1, = | (XEVa¥E X4 (4.6)
Observe that, from (4) and (5)
-
FEroao
B ’—H— 2 e T S L PR R S = UF 0

S il L (P (“ Ut

0 : £ 0
I  : o0 o

=QH P diw " aa i AT U{f 0
0 0 I 0 Ui® )
~-X-ir : -1 g
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I 5
W1=QH( OP)U;H, Y1=QH( 0 )U{". (4.7)
= ). P

On the one hand, substituting (4) and (7) into (6) we get
1

S(ﬂ}
1
and on the other hand, by (1) and (4),
cos 8y = | XT X{|lz = U (T, 0)U1" [l2 = V.,

Therefore

= “(tmzﬂr,r,{ﬁf]--%||2 s B Y e, (4.8)

Tmy

and so
1 1

Vi—cos?l; oOm, '
Equalities (8) and (9) give (3) for j = 1 and 2m; < n. With the same argument we can

prove that the relations (3) hold for 2m; > n.
By (3) we can rewrite inequalities (2) as

(4.9)

cscd; =

1 :
& S{z) +\/(§§-§T)2_1£’Eﬂr 19=1--,r (4.10)
3
Moreover, inequalities {0.12) can be rewritten as
2!&22 i .
2 . S e
Ko 5 1>0, 7=1,---,r. (4.11)
3

It is obvious that inequalities (10) and (11) are equivalent, and so inequalities (2) and (0.12)
are equivalent.
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