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Abstract

In this paper a general numerical method for solving Riemann problems is dis-

cussed. It can be used to solve the Riemann problems of various hyperbolic systems
of differential equations with two independent variables. The problem of reflecticn of

discontinuities from external boundaries can also be solved by this general numerical
method.

" §1. Introduction

It is well-known that the Riemann problem plays a very important role in the theory
of hyperbolic differential equations. Solving Riemann problems is the foundation of many
numerical methods in this field. In the singularity-separating methodl2}(2], in order to deal
with interactions between discontinuities and reflection of discontinuities from boundaries
accurately, it is also necessary to solve Riemann problems or some similar problems. In this
paper a general numerical method iz discussed. It can be used to solve the Riemann problem
of various hyperbolic systems of differential equations with two independent variables. It
iz natural that users must give some necessary information when they use it. For example,
the number of equations, the number of the distinct characteristic values, the multiphcity
of every characteristic value, the physical quantities on the left and the right sides, the
relations between physical quantities on the two sides of every kind of discontinuity, the
entropy conditions, the relations among the physical quantities in every kind of central wave,
the values of some parameters in equations and so on. If the above information 18 given,
the solution of the Riemann problem, the types and the velocities of the discontinuity lines
and weak discontinuity lines and the physical quantities between them, can be determined
by our numerical method.

§2. Determining Equations for Riemann Problems

To solve a Riemann problem means to find out the solution of a system of quasilinear
hyperbolic differential equations

ol ol
=l A(U)-g;- =0

2 (1)
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with the following kind of initial value

Ui, r <0,

Ulz,to) = { (2)

U,, z > 0.

Here U(z,t) is an n-dimensional vector, A(U) is an n X n matrix with n real characteristic
values and U; and U, are n-dimensional constant vectors.
Suppose among the n characteristic values there are | distinct ones, which are A1) @)

.+, AlY) in the decreasing order, i.e.,
Al 5 308 s .00,

In this case the structure of solution for a Riemann problem is as follows (see Fig.1)l%]: it
consists of I — 1 new constant-value subregions and [-discontinuity lines—! boundary lines of
the { — 1 subregions. Here a discontinuity line means a real discontinuity or a central wave
for the case that the state equation is convex, which we assume in this paper.

X
’ Second discontinuity line
I-th discontinuity line

First discontinnity line

_____ First new constant-

value subregion
U U.

—

Fig. 1

If AG) is a k(¥)_fold characteristic value, there are n + 1 — k(¥ discontinuity relations
on the t-th kind of discontinuity line, where discontinuity relations means jump conditions
on discontinuities or central wave relations. In practice, the jump conditions are nonlinear

equations and the central wave relations, generally speaking, are ordinary differential equa-
tions. These discontinuity relations together form a system of equations which will be used

to determine the solution of Riemann problems.
Because

ZI: (ﬂ-+1—k“}) = {(n+ 1) —~ikm =in+1)—n= ({—1)n+ 1,

1=1

the total number of equations in the system is (I — 1)n +{. The unknown quantities are
! velocities of discontinuity lines and {I — 1)n physical quantities in the [ — 1 subregions.
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Therefore the number of unknowns is equal to the number of equations, lLe., the system is
determined. However, it is an umusual nonlinear system: before the solution is obtained,
we do not know which discontinuity relations— the jump conditions or the central wave
relations—should be used for a certain boundary line. This makes the formulation of the
problem more complicated. But it is clear that the t-th kind of discontinuity has the proper-
ties: (a) the velocity of the i-th characteristic line on its left-hand side must be greater than
or equal to its velocity and (b) the velocity of the s-th characteristic line on its right-hand
side must be less than or equal to its velocity. Consequently, if (a) or {b) is not satisfied,
then the central wave relations should be adopted; otherwise the jump conditions should be
used.

§3. Numerical Methods

The general form of jump conditions corresponding to A is
19 (v, v, V) =0, j=12-,n+1-k", (3)

where we suppose A‘.':) is a k") fold characteristic value, V(¥ denotes the velocity of the
discuntinuitf and U,('}, U,!'} stand for U on its left— and right- hand sides respectively, In

many cases, the components of Uim can be divided into two parts and every component

in one part can be expressed as a function of Uf), V) and the components in the other.
Therefore, (3) can usually be written in the following special form:

{ F& (U1, 08,v) =,

U[i) = {9 (U,!i}, V’{:‘)lr U{")

{,n—m;

(4
1

I,m.'

where F(”, G Uf{ﬂn' AN are n;, n+ 1 — k(%) — ni, n+1— ki) — ni, k) + n; — 1

l.n—m;

dimensional vectors respectively, U;{L}H consists of some components of U}{"}, and U;{_ﬂ_mi

consists of all the other components of Ui{i}*
The general form of central wave relations corresponding to Al*) is a system of ordinary
differential equations of the following form

=W (7.29)

with initial conditions

v () =uP,

where U!*) is the U on the right boundary of the central wave and AL = A(9) (U,!i}) . From
these relations, we can have the relations

U:H} — g% (U'!i]’v[i}) (5)

implicitly or even explicitly, where Ul{i] 1s the U on the left boundary of the central wave
and V) = A(} (U}{i}) ( in order to make (5) in the form (4}, we use V%), instead of Alﬁ),
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to represent A% (Ur{i}) ). Therefore, the discontinuity relations could be in the form (4) in

any case and when Al") > V() instead of (4), (5) should be used.
Therefore, solving a Riemann problem is reduced to solving a system of the form

70 (Ul(i)’mi)’vm) —p, (6)

Ui =G (U, V9, U,.). (7
1 = 1121'“111

" =0, (8)

where U,P‘} = [/, 18 given and U,{-i} = Ul(i_”, 1'. = 2,3,--+,1. This system can be solved in
the following way: _
(1) We guess V') and all the components of U,Eﬂ_mi, 1=1,2,.--,1L

(2) All the components of U}ﬂh are computed by using (7), 1 = 1,2, -, 1, successively.
(3) Relations (6) and (8) are checked. If all those relations are satisfied, then we have

a solution; if not, we adjust V (¥} and all the components of UIE::}-m.- and do Steps (2)
and (3) again.
Therefore solving (§)—(8) can be reduced to solving a nonlinear system with {+

l | _
Z (k{“ + ng - 1) unknowns, which are V) and all the components of U,{ﬂ_mi. Any

i=1
numerical method for systems of nonlinear equations can be adopted. A discretized Newton

method!!] or a generalized linear method by Brown!4l is used in our computation.
Clearly, if, instead of (4), we have jump conditions of the form

{ s) (U,{i},U.!':},V{*}) —0

vl =gt (U:(“:V“}:Uf.{_m,_) | (9)
the problem can be solved similarly. If for ¢t = 1,2,---,{;, for example, {}, = [I/2], jump
conditions are in form (4) and fors = I; +1,- -, [, they are in form (9), a similar method can
be constructed for solving the Riemann problem. In many cases, solving a Riemann problem
in this way gives some benefits. For example, if A1) is a multi-fold characteristic value,
solving a system in such a form usually needs less computer time than solving a system in
(6)—(8) because the number of unknowns for the iteration procedure will be smaller. Other
benefits will be described 1n Section 4.

It is well-known that for these iterative methods of Newton-type, only if the initial value
is quite good will the convergence of the iterative procedure be guarantteed. Also, it 1s
clear that if U; = U,, the solution will be a constant-value one: in every constant-value
subregion, U = U; and the discontinuity lines are characteristic lines. If Uy ~ U,, the
solution should be close to the above constant-value solution. Therefore, if U; ~ U,, we
can always find a good initial value and the iterative method will work. Consequently,
instead of solving a Riemann problem with initial value U; and U,, we solve a sequence

‘(Ur o m)
+
m

i =1,2,---,m, in the
Ur—Ul

m

of Riemann problems with initial values Uy and U

following ‘wa.y. First we solve a Riemann problem with initial values U; and U} +
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Ur_U’l

Zm

as the initial iterative value. Then we

(U, - U)

taking a constant-value solution U = U; +

solve the Riemann problem with initial value U; and U, + taking the solution of

(i — 1)U, = V)

as the 1mitial iterative

the Riemann problem with initial value U; and U; + =
value, £ = 2,3, .-, m. When m is large enough { i.e., (U, — U;)/m is small enough ), these
iterative procedures will converge. In practice, first we take a small m, and try the iterative
procedure. If the iteration does not converge, we take a larger m and try again until the
iteration is convergent. Of course, in the procedure of solving the problem, if we find the
initial iterative value is very good, we can take the solution of the Riemann problem with

initial value {/; and U; 4 (s — 1){Ur - U;)

™m

problem with initial value U; and U; + = , k& > 0, instead of In

this way, we can obtain the solution with less computer time. If for every initiaT value U
and U, + £(U, ~ U;), £ € [0, 1], the Riemann problem has a solution, the method mentioned
above will work.

After we obtain the solution, we check if the entropy condition is satisfied. For the
hyperbolic problem with a convex equation of state, if A(*) is not a multifold characteristic
value, the entsopy condition for the i-th kind of discontinuity seems to be

as the initial iterative value for the Riemann

i(U, - U)

(s + &) (U, — i)

A<y < 20 (10.1)
EUTP S L TN F S (10.2)
MWD 2y fitn, (10.3)

In our method, Al < VG or Vi < Af“ 1s always satisfied, so the entropy condition must
be satisfied at least partly. Moreover, from Section 4 we can see that for some cases, (10.2)
and (10.3) can be deduced from (10.1) and the left inequality in {10.1) can be deduced from
the right inequality in (10.1) or the right inequality in (10.1) can be deduced from the left
inequality. In addition, the initial iterative value seems to be quite close to the entropy-
satisfying solution. Therefore it is hopeful that our method often gives an entropy-satisfying
solution.

§4. Examples of Application

As an example, the Riemann problem of a one—dimensional unsteady gasdynamic system
has been calculated. The following informations is given:

n=3, (=3, ~=14,

u 0.0 0.0
U=| |, =] 10, U =1 0125
e 1.0 0.1

Here and in what follows, u stands for velocity, p for density, p for pressure, v for the ratio
of specific heats, ¢ for sound velocity, V for velocity of the discontinuity line, the quantities
with the subscript 0 for the physical quantities in front of the discontinuity hne, and the
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quantities with the subscript 1 for the physical quantities behind the disconfinuity line. The
relations which correspond to A1) = u + ¢ is as follows:
1) The relations on shock wave are

poluo — V) = p1{us = V), polto— V)2 +po = p1(u1 — V)? + p1,

‘]' FD 3 Y Pi 2
4 0.5{ug — V + 0.5(u; — V)=,
—1pu (D ) 'T—lpl (1 )

This system has a trivial solution and the other solution is

o1 = po((v+ 1)/ (v — 1)) M3/ ((2/7 — 1) + M3),
u1=u0-—(uu—*V] (1—;'—':), . — ME— (uu—V.)z-

p1 = po + po(uo ~ V)? (hﬂ).

£1

2) The relations of rarefaction wave are

L B ALl MY — gy ) 7!
L A —— —
Uy ~ 1 ( 2 Up i cﬂ) y P1 Po ( co y

—2_
A(ll_ 7—1
p1=pu( : u;) , where ¢= 2t
0

c p
The discontinuity relations which correspond to A{?) = u are as follows:

=49, P1=Ppo, VYV = to.

The relations which correspond to A(®) = u — ¢ are as follows:
1) The relations on shock wave are the same as in the case for A1),
2) The relations of rarefaction wave are

2 "]——1 a
u1=7+1( 5 ug+)u{1]+cu),

2

g 2T "
(u1 s ;\g }) 3= (u1 = Aial) el
rPr = Po y PL= Mo
o)) Co

The entropy conditions of the first family of shock are

MY = o+ /2 < v <Al = uy 4, [T
PO P1

U = A?} ﬂ V“) .

From the relations on shock wave we see that V(1) — 4, has the same sign of V1) — y; .
Therefore we can deduce the second inequality from the left part of the first inequality. That
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1s, we can think that the entropy condition for this cage consists of only the first inequality.

7
Clearly, the left part of the first inequality can be rewritten as My = fln 2 1 and the
v/ po

< 1. From (11) we know that £ > 1 18 equivalent to MZ > 1.
vVIP1/p1 Po

Moreover, the following relation similar to (11)

V—u1

right part as M, =

holds. Thus p; /py > 1 is equivalent to M{ < 1, ie, MZ > 1 is equivalent to M2 <1,
From the relations on shock wave, we know M; > 0 if and only if M, > 0. Therefore, if
Mo > 0o0r M; > 0, My > 1 is equivalent to M, < 1. Consequently, if the left part of the
first inequality holds, so does the right part; if the right part holds and M, > 0, so does the

left part. Noticing M; > 0 if )u?} =u; <V we know that, when
A<V o A <y < (0

the first ineqfiality is satisfied, i.e., the entropy conditions are satisfied.
For the second family of shock, the entropy conditions

AW <y <20
V) < a3

can be reduced to V(3 < Af] or A(laj < Vvie < AF) . Therefore, if we take (4) fort =<1
and (9) for s = 3 in the method in Section 3, we can always obtain an entropy-satisfying
solution.

For the above Riemann problem, our method gives the following results:
The types of - the boundary lines are

DIS1, DDI2, CHA3, CHA3,

where DIS1 stands for a shock wave which corresponds to A1}, DDI2 for a contact discon-
tinuity which corresponds to A2 and CHAS3 for a characteristic line which corresponds to
A3), The velocities of the boundary lines are

1.7522, 0.9275, —0.07025, —1.1832.

In the first constant-value subregion from the right,

u = 0.9275, p=0.2656, p = 0.3031.

In the second constant-value subregion,

u=0.9275, p=04263, p=0.3031.
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In the region of rarefaction wave, for A(®) = AE‘”, A}f) + % ( {[-_,3) - ,1(13]), e AE’) +
(}‘l{:lﬂ) - Ag.a}): }‘f’}:

u = 0.0000, 0.1855, 0.3710, 0.5565, 0.7420, 0.9275;
p = 1.0000, 0.8528, 0.7234, 0.6102, 0.5117, 0.4263;
p = 1.0000, 0.8001, 0.6355, 0.5008, 0.3914, 0.3031

=

reapectively.

Another numerical example i8 shallow water equations{E'] . The hyperbolic quasilinear
system of equations governing the flow of an ideal imcompressible fluid in a gravitational field
is known as the shallow water equations. In the solution of these equations, discontinuities
arise when bores or hydraulic jumps are present. An example of such a phenomenon is
provided by the problem of the break down of a dam.

The homogeneous shallow water system 1s
he + (hv)z =0,

ot (2 2o) =0, -

Here, h stands for the depth of water, v for mean velocity, and g for gravitational acceleration,
which is 9.8066 m/sec®.
We take the following initial values:

v = 0.2667, hy = 10.8, v, = 1.6, h, = 1.8.

For the above Riemann problem, our method gives the following results:
The types of the boundary lines are

DIS1, CHA2, CHAZ.

The velocities of the boundary lines are:

10.74, 0.4536, —10.02.

In the constant-value subregion,

v="7.252 h=4.713.
1
In the region of rarefaction wave, for A% = AE}, A‘[f) + £ (1?} — A{{,ﬂ}) y A?] ;

= 0.2667, 1.664, 3.061, 4.458, 5.856, 7.252,
h = 10.80, 9.384, 8.067, 6.849, 5.732, 4.713,

respectively.
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§5. Reflection of discontinuities from external boundaries

Solving a problem of reflection of a discontinuity from an external boundary is similar
to solving a Riemann problem. After reflection some new constant-value subregions are
generated. We must determine the physical quantities in the constant-value subregions
and the types and velocities of discontinuity lines between these subregions. The problem
of reflection of discontinuities from external boundaries can also be solved by our general
numerical method. It is natural that the boundary conditions should be given by the user.

§6. Concluding remarks

A sub-software for the Riemann problem based on the above method is a component
part of numerical software for the initial-boundary-value problems of hyperbolic differential
equations. The sub-software can deal with various interaction and reflection problems which
appear frequently in the initial-boundary-value problems of hyperbolic differential equations.
We believe it will also be very useful for other purposes.

# References

[1] Zhu You-lan, Zhong Xi-chang, Chen Bing-mu and Zhang Zuo-min, Difference Methods
for Initial-Boundary Value Problems and Flow Around Bodies, Science Press, Beijing,
China, 1980; English Edition, Springer, Heidelberg, FRG and Science Press, Beijing,
China, 1988.

[2] Wu Xionghua and Zhu Youlan, Numerical solution of multimedium flow with various
discontinuities, Journal of Computational Mathematics, 1: 4 (1983), 303-316.

[3] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of
shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pennsyl-
vania, 1973.

[4] K. Brown, A quadratically convergent Newton-like method based upon Gaussian elimi-
nation, SIAM J. Numer. Anal., 6 (1969), 560-569,

(3] Magdi M.Shoucri, Numerical solution of the shallow water equations, J.C.P., 63 (1986),
240-245.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg

