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POLYNOMIAL ACCELERATION METHODS FOR SOLVING
SINGULAR SYSTEMS OF LINEAR EQUATIONS*V

Cao Zhi-hao
(Fudan Unsversity, Shanghus, China)

Abatract

In this paper we study the polynomial acceleration methods for solving singular lin-
ear systems. We establish iterative schemes, show their convergence and find iteration

error bounds.

§1. Introduction

For many practical problems, such as Neumann problems and those for elastic bodies with
three surfaces and Poisson’s equation on a sphere and with periodic boundary conditions,
their finite differerice and finite element formulations lead to singular but consistent systems
of linear equations. In addition, when an eigenvalue problem is solved by a relaxation
method, the solution of a singular linear system is involved!®l. However, as pointed in [1],
methods for solving singular systems of linear equations have unfortunately been somewhat
neglected in literature. Perhaps this is due to some of the difficulties involved in establishing
criteria for convergence. |

In this paper we study polynomial acceleration methods for solving singular linear sys-
tems. We establish iterative schemes, show their convergence and find iteration error bounds.

For convenience, we discuss real systems. All results obtained in this paper can be easily
generalized to complex systems.

We use the following notations: E™ is an n-dimensional real vector space, E®*" stands
for a set of all n X n real matrices, N{A) and R(A) represent null space and column space
(range of value) of matrix A, respectively, o{ A) stands for the set of all eigenvalues of matrix
A and AT and A* are the transpose and the Moore-Penrose inverse of matrix A, respectively.

82. Basic Iterative Methods

Consider a linear system
Az =}, (2.1)

where A € E"*", z € E™ and b € R(A). We construct a (linear stationary) basic iterative
method
2/t =Tz¥ + g, (2.2)
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where the iterative matrix T € Em*™ g € E* 2¥,2¥"! € E™. (2.2) can be written as
follows:

¥t = z¥ — H(Az" — b), (2.3)
where H € E™**"™, From (2.2) and (2.3) we have
T=1—-HA, g=H: (2.4)

Let z*{z°) denote a solution of {2.1) which is a limit of a vector sequence prnduced by an
iterative method (not necessarily a linear stationary iterative method} with z° as an initial
iterative vector. Then we define the set of error vectors U!8l:

U={y:y=2z-2"(z), ze€lUy}, (2.5)
where U 18 a set of the initial iterative vectors. When U is a subspace of E™, we use | - ||¢
to denote a vector norm in U and the induced matrix norm. Then we use Roo(T),

- ——
R (F) = — lim L1 7)), (2.0

to denote the asymptotic rate of convergence of an iterative method for solving singular
systems, where T(¥) gtands for the error transition operator of the v-th iteration!®l.
If we cnsider the linear stationary iterative method (2.2)—(2.4) and introduce the sub-

spectral radius of the iterative matrix T

HT) = max{]A] : A € o(T) U{ON{1}), (2.7)

then we have the following result:

Theorem 2.1!%. The linear stationary iterative method (2.2)—(2.4) is convergent in
Ug = E™ 3f and only if

(i) +(T) <1,

(ii) rank (I — T) = rank (I - T)%,

(iii) N (A4) = N{H A} or, equivalently, N{H) N R{A) = {0}.
When the linear stationary sterative method s convergent, U (cf. (2.5)) must be a subspace:
U= R(HA), and the asymptotic rate of convergence 1s

Roo(T) = — In~(T). (2.8)

Note that the basic iterative method (2.2)-(2.4) can be derived from the splitting of

matrix A:
A=HY-H'T. (2.9)

Definition 2.1. The sterative method (2.2) 12 symmetrizable 1f for some nonsingular
matriz W the matriz W{I — T)W ™1 s symmeiric posstive semidefinite (SPSD). Such a
matriz W is called a symmetrization matniz.

Obviously, if the iterative method {2.2) is symmetrizable, then the eigenvalues of T are
real and matrix T is diagonalizable. Hence the condition (ii) of Theorem 2.1 is satisfied. Let

m{T) =min{A: A€o(T)}, M(T)=max{Ar: Aeco(T)};

then we have

M(T) < 1. (2.10)
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We now consider the simplest acceleration iterative method. Let us construct an extrap-
olation method based on (2.2):

¥t = w(Tz" + g) + (1 —w)z”,
where w is a real parameter. The above expression can be rewritten as follows:
gt = [wT + (1 —w)i|2” +wg=T,z" + wg. | - (2.11)
Suppose (2.2) is symmetrizable and determine w = & such that
¥(T5) = min (T, ). (2.12)

Le
t M. (T} =max{A: A € o(TI\{1}},
m.(T) = min{A : X € o(T)\{1}}.

Obviously, we have M,(T) < 1. It is not difficult to get the solution of problem (2.12):

(2.13)

& = 2/[2 — My(T) — my(T)],

1Ts) =6 = My (T) = ms(T)]/[2 = My(T) — s (T)] < 1. e

Since 4(T5) < 1, the optimal extrapolation method (2.11) based on (2.2) satisfies conditions
(i) and (ii) of Theorem 2.1. Therefore, if the basic iterative method (2.2) is symmetrizable
and condition (iii) of Theorem 2.1 is satisfied, then the optimal extrapolation method based
on {2.2) (which is not necessarily convergent) is convergent.

3. Polynomial Acceleration Based on the Symmetrizable
Basic Iterative Method

In this section we always assume that the basic iterative method (2.2) is symmetrizable
and a symmetrization matrix is denoted by W
Obviously, the set of the linearly independent eigenvectors of T,

{pily 7=12ym, (3.1)

includes a basis for E®. We assume the following normalization conditions are satisfied for
the set of eigenvectors:

(WTW i, 05) = (Wei, We;) = & (3-2)

Without loss of generality, let {¥;}, s =1, -, m, be the linearly independent eigenvectors
associated with eigenvalue 1 (if any) of 7. If condition (iii} of Theorem 2.1 is satisfied for
the iterative method (2.2) (which is also assumed to be satisfied in this section), then we

have
N('A) = N(HA) ~— 8pal {591: iy ‘Pm}: (33)
and

E" = N(A)® R(HA), (3.4)
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where the orthogonality is in the following sense:

(We,Wy) =0, Vee N(A), V¢ e R(HA). (3.5)
By || - [[w we denote a vector norm in E™ defined as follows:
lellf = (We,We), Ve E" (3.6)
The induced matrix norm || - |l is
|Allw = [WAW™ (3, VA€ E™*" (3.7)
The minimum solution with respect to the norm | - [|w of (2.1) is denoted by Z**;

obviously, 2** € R(HA). Let ¢¥ = z° — 2** be the error vector of the initial vector 2°. The
error vecior ¥ = z¥ —z** of the iterative vector ¥ produced by the polynomial acceleration
method based on (2.2) with respect to the sequence of polynomials {Q,(x)} can be expressed
as follows!Sl:

e’ = Q. (T)e°, (3.8)

where Q, (1) € 7., and P, stands for the set of all polynomials of degree < v and the value
equals 1 wheg u = 1.
From (3.4) we know that z° and £ have decompositions

z° =20 + 23, z0 € N(A), z2€ R(HA)

and
?=el+el, f=20eN(A), &=23-3"cR(HA), (3.9)

respectively. Hence

e’ = Qu(T)e"” = Qu(T)e} + Q.(T)e; = 2] + @, (T)e3. (3.10)

In view of (3.10), for the convergence of an iterative method for a singular system we should

have

O

|
£ — z7, VvV — 00,

that is
¥ — 10+, v — 0. {3.11)

Note that if we make the decomposition for any z € E":
T=2,4+23, zEN(A), z;€ R(HA),

then
z¥(z) = z; + E**. ' (3.12)

By taking Up = E™, it is easy to know (cf. {2.5))
U/ = {:'.':2 — 2% 12 € R(HA)}. [3.13)
We now have

1Qu(T)eSlw < Qu(T)lw ekl = max{|Qu ()| : X € SN ew (514
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In terms of (3.10)—(3.14) we can derive the Chebyshev semi-iterative method based on (2.2)
for solving the singular system (2.1). Let

HQu(T)) = max{([Qu ()| : mq (T) < 4 < M, (T}, (3.15)
Deflnition 8.1. If the polynomsal sequence {Q;(p)} s chosen such that
H(Qu(T)) = min{5(Q(T)) : Qu(u) € L}, (3-16)

then the associated polynomial acceleration method is called Chebyshev sems-sterative method.
Since the derivation of the Chebyshev semi-iterative method for the singular systems is
analogous to that for nonsingular systems, we only give the results and omit the details of
the derivation.
Iterative Scheme (Chebyshev Semi-Iteration):

z! = G(T2% + g) + (1 — @)=°,

3.17
27t = a[@(Tz +9)+ (1 -d)z"|+ (1 - Ho4r)2¥ Y, v 21, L

where @ is as in {2.14) and 5, can be calculated resursively as follows:
»
51 =1, ﬁ2= (1—“&2)"2)_“1, ﬁy.i.l = (l—ﬁpﬁ'ﬂfﬂi)_l, lfaz,

where & is as in (2.14).
In regard to the rate of the convergence of the Chebyshev semi-iterative method we have
(cf. (3.10)-(3.14))

&5 1w = 11Qu(T)edlln < [2772/(1+ )]l llw, (3.18)
where
1-+v1-—52
F = : 3.19
SR yay "

In terms of (3.10)-(3.14) we can also define the conjugate gradient acceleration method
based on the basic iterative method (2.2) for the singular system (2.1).

O
Definition 3.2. If the polynomial sequence {Q;(u)} is chosen such that

max{lé,,(,\]l : A €o(T)\{1}} = min{max{|Q.(A)|: A€ o(T)\{1}}: Q. € .}, (3.20)

then the associated polynomial acceleration method is called conjugate gradient acceleration

method. ~
It is easy to know that the following algorithm is also applicable to solving (2.1) when

A is SPSDISl.
CG (Conjugate Gradient) Algorithml®! :
't =2 +a,p”, p*=r"+Lp’ 1 (p® =r° = b A2V),
= — e dp¥T, oy = (pY, )/ (Y, ApY) (= (7, )/ (2, APY)), (3.21)
Bo = —(r, Ap"*)/ (0", Ap¥ =)= I 113 /1r~HI13],

rl-l"
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or the equivalent three-term recurrence shceme:
' = pupi1fwpsrr” + ]+ (1 — pos1)z” 4, (3.22)

where

Wyl = (rp: ru)f(ru! Arp)s

Wy 41 (I"y, f‘u) 1
pl 3 pl-""l']. wu (ru_ljrv__l) pu

~1
] , V21

If ¥ is replaced by & — Az¥ in (3.22), then the three-term form of CGM can be written as
follows: |

¥t = o {wesi[(F — A)z” + 8] + (L — wpy1) 2} + (1 — poyr)z” 2. (3.23)

From (3.23) we know that CGM is a polynomial acceleration method based on the basic

iterative method whose iterative matrixis T = I — A.
From (3.4) (with H = I) we know that, when A in (2.1) is SPSD, A is SPD in the

subspace R{A). Therefore, || - [[41/2 18 a vector norm in R(A). Let z** = A*b e R(A) be a
solution of (2.1}, It is easy to prove the following theorem.

Theorem 8.1. Let the initial vector z° have a decompostizon:
»
20 =23 + 23, z; € N(4), z3€R(A).

Denote
:rg + span{r®, Ar®,--. A4¥r°} = zg + 8,41 € R(A). (3.24)

Then z¥+! € 29 + §,41 and z¥1! — 20 minimize ||z3 — 2**|| 419 (Vz2 € 23 + S 41).

In regard to the rate of convergence of CGM we know from (3.10) that the error vector

e¥ of 2 can be expressed as follows: 1

4

g 0
e’ =z, + Qu(T)es = 23 + 5.

Theorem 3.2. Assume A is SPSD. Then we have the follounng steration error bound

of the CGM for (2.1):
21_;1:[2

1 lavs €~ Sl asr, (3.25)
where
p= (YAIoLYE gy = M (3.26)
(A) +1/° mo(A)’
while

mo(A) = min{A : A € o(A)\{0}}. (3.27)

Proof. Apply Theorem 3.1 and (3.18).
Corollary. If A is SPSD, then for the error e of CGM:

D
eV = g9 + (25 — z**),

there holds

—_ v
i |

2§ —=** 13 < 4(
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We now discuss the conjugate gradient acceleration based on the basic iterative method

(2.2), i.e. the Generalized Conjugate Gradient Method (GCGM).

Since we have assumed that the basic iterative method (2.2) is symmetrizable and (iii)
of Theorem 2.1 is satisfied, (2.1) is equivalent to the following preconditioned system:

Az = b,

where

A=W({I-T)WW™, 2=Wz, b=WHb
By applying, CGM (3.21) to (3.29) and making substitutions:

¥ =Waz¥, =W, p¥=Wp",
where 6* is the pseudo-residual vector of z*:
§¥ = Hb— (I - T)z" = Hr",
we have the following GCG Algornithm:

ﬂ:l-"i'l — II--"' + appl/’
p L5+ fp (¢ = 60 = H® = H(b - 4=")),
(Wp”,W6*) (W6, Ws¥)

| 31

T W WI-T)p) L W, W(I—T)p
(Ws*, W({I—-T)p*"1) 1 (W, Ws") ]
ﬂ"" (Wp"_I,W[I— T)pu—l) [ [W&"_I,W.*S"_l) !

or the equivalent three-term recurrence scheme (cf. (3.22)):
2t = po+1(wo416” +27) + (1 Pu+1)IP—1, §¥ = Hr",

where

. [1 - (W&",WT&")]—l
Has (Wév,Wév) 1 °

- » PPN | [Wﬁ”,Wﬁ”) 3

Fr=1 ppy1 = [1 . (WS”_I,WSU-I) o

By applying Theorem 3.2 we can prove the following theorem.

Theorem 3$.8. For the error vector £ of z¥ produced by GCGM:
e’ =20 + (z¥ — 2**) = 2} + 5

there holds
3Pl

e liwrw -T2 < 7 P 12 liw = w (1—1)72025

where

L_1-VIZE L My(T)—my(T)
141562 2 — M,(T) —m,(T)

oy
] -

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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§4. Conjugate Gradient Acceleration for the CGW Method

Let A in {2.1) be {not necessarily symmetric) positive semidefinite. Make the CGW
splittingl2 75l
A+ AT AT -4
2 2
where M is SPSD and N is asymmetric. The proof of the following lemma is obvious and
30 is omitted.

Lemma 4.1. Assume that A sn (2.1) 1s positive semidefinite (PSD) and

A=M-N= (4.1)

N(A+ AT) = N(A) n N(AT). (4.2)

Then
R(A), R(AT) c R(M). (4.3)

In this section we always assume that A is PSD and satisfies {4.2).
With reference to {3.34) for the symmetrizable basic iterative method we construct the
following iterative scheme:

p g Pu+1(wu+16u o I'u) + (1 = Pu+1)mu_1: p1 =1, (4 4)
5v = M*r¥ = Mt (b - Az¥). '

Theorem 4.1. If the parameters {p,,w,} are chosen such that

(6V, M8¥) 1
6#—1,M§u-—1) 8

—1
G i . g pu+1=[1:( ] L S, (4.5)

then the sequence {6} produced by (4.4) satisfies the orthogonal relations:
(6*', M§°) =0, 1i+#j.
Proof. From (4.4) we get
MEVH = MEVT ~ puyi[wor1 ASY + M6V — 6Y)). (4.6)

From Lemma 4.1 we know

§¥ = Mt € R(M).

Since M is SPD in subspace R(M), the conclusion of the theorem can be deduced by
induction.

(4.4) and (4.5) form the GCG Algorithm for the CGW method. .
We now consider the convergence and the iteration error bound of the GCGM. Let

A=M(I-T),ie. T=M*N, °=M*° (4.7)

and

S, = span {6°,T6% ..., T*"16°} c R(M). (4.8)
From (4.6) and the M-orthogonality of {6} we have

- 8§, = span {6° 6%, . -,6“" ). (4.9)
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From {4.4) and (4.5) we have
€z’ + 8§, =2 + ::g + S, (4.10)

where
zl € N(A), 25 € R{AT) c R(M). (4.11)
Then z¥ can be expressed as follows:

I

¥ = 20 + 2%, i€ N(4), =5 € R(M).
Let z** = ATb € R(AT) c R(M). Then we have
e =2¥ —z** =20 + (2§ — z**) = ] + &5, (4.12)

Since
M =1 = —A(z" — 2°%) = —A(z] — 2™7) = —Aey (4.13)

and since the sequence {§'} is M-orthogonal, we have

(6, Ack) =0, V6 € S,. (4.14)
’
From (4.4) and (4.13) we get

eyt = (1— pyi1)ed ™! + pus1(6Y +€4) = (L~ poya)ed™
—po+1 (M1 Aeq — €3) = py41Tes + (1— pu+1)es

Hence
e =p,.(T)ed, pu(u) €P, (4.15)

and p,(u) is an odd (even) polynomial when v is odd (even). From (4.15) we have
z% = z** + p, (T)e3. (4.16)

Now it is easy to derive some variational properties of {z£}. Notice that M is SPD m

R(M). The proofs of the following lemmas and theorems can be made with reference to
those in [4]. In what follows {z"} is the sequence produced by GCGM (4.4) and (4.5).

Lemma 4.2. Let 22¥ = 2§ + z2¥. Then z3¥ € 28 + (I + T) 52, and
||s§"" |agrss = ||z§" — z**||pra = min{lly — 2™%||pa 0 Y € zo + (I + T) 82, }.

Lemma 4.3. Let 22V = 292 4+ g2+, Then 22¥ ! € 2 4+ 6° + (I + T} 82041 and

1624 ||agrrs = ||z3¥ 1 — 27 || g3 = min{|ly — 27 |[ars 0 Y € zo + 6° + (I + T) S204+1}-

From the optimal approximation properties of {25} described by Lemma 4.2 and Lemma
4.3 we get the following theorem.

Theorem 4.2. Let g (1) be any polynomial with degree < v and satisfy the condilions:
g{1) =1 and g(—1) = (—1)¥. Then

€5 lagrn = 2% — 2**lagrn < [19o(T) (23 — 2°°)|agrsa. (4.17)
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By Theorem 4.2 and the choice of a proper sequence of polynomials {q, (i)} we can get
an error bound of the GCGM based on the CGW splitting.

Since M is SPD in R(M), T = M* N is asymmetric in the inner product (-, -)as. Let
T denote T restricted to R(M) and write

A= olThe] = | Tl g (4.18)

Then we can get the following theorem:

Theorem 4.3. Let A sn (2.1} be posstive semidefinite and satisfy (4.2). Then we have
the error bound for the GCGM (4.4)(4.5) based on the CGW splitting (4.1) of A:

2712

5 laen < 3 yozs lebllacn, (4.19)
where
AL A2
e YIHAT -1 (4.20)
V1+4A2+1
Py
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