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Abstract

A completely exponentially fitted difference scheme is considered for the singular
perturbation problem: sU" + a(z)U’ — b(z)U = f(z) for 0 < z < 1, with U(0), and
U(1) given, ¢ € (0,1] and a(z) > a > 0,b(z) > 0. It is proven that the scheme is
uniformly second-order accurate.

V1. Introduction

The singu}a.r perturbation problem

LeUs(z) = eU" + a(z)U' - b(z)U = f(z), O0<z<1 1
U(0) = Bo, U(1) = $1, (1.1)

where ¢ is a parameter in (0, 1], a(z) > a > 0,4(z) > 0,z € [0, 1], is one of those main
problems computational mathematicians are trying to solve. In dealing with this problem,
some mathematicians are most interested in those numerical methods and schemes which
are valid for the small parameter ¢. In 1969, II’ in [1] designed an exponentially fitted finite
difference scheme in the case b(z) = 0, and showed that its solution converges uniformly in
€, with order one, to the solution of (1.1). Kellogg and Tsan [2] (1978), Miller 3] (1979) and
Emelyanov (4] (1978) independently extended this result to the case b(z) > 0. Wu Qiguang
[5] (1985) studied a class of weighted exponentially fitted difference schemes and proved
that these schemes are uniformly convergent with order one. We have reason to say that
satisfactory resulte have been obtained from the researches on the schemes which converge
uniformly in & with order one. In recent years, some mathematicians began to study higher
order schemes. Hegarty, Miller and O'Riordan [6], Berger, Solomon and Ciment [7] proved
separately that the completely exponentially fitted difference scheme (also called exponential
box scheme) is convergent uniformly in ¢ with order two in the case 5(z) = 0, which was
derived by El-Mistikawy and Werle [8] in 1978. However, they could only conjecture through
their numerical experimenta that the same is true in the case b(x) > 0. In this paper, the
scheme will be written in the form of completely exponentially fitting factor by introducing
a dominant algebraic quantity. We will prove theoretically the conjecture of Berger etal.
and complete soundly El-Mistikawy and Werle’s scheme.

For the sake of convenience, we assume a(z),b(z) and f(x) are smooth emough, and
throughout this paper those positive constants which are independent of «, h and z; will be

generically denoted by C.

* Received October 22, 1988.
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§2. Asymptotic Properties of the Solution

In order to give bounds for the discretisation error for the scheme which are uniform m
¢ and h, we need the asymptotic expansion of the solution of (1.1). We first consider the

following problem
LU, (z) = felz)y, 0O0<z<], (2.1)
Ue(0) = Po(e), Ue(1) = B1(e). |

where |Bo(e)] < G, |81(e)| < C, £ (2)] < C{1 + e~ exp(—az/e}},i 2 0.
Noticing the Uniform boundness of fo(e) and £, (¢), we have
Lemma 3.1 (Kellogg and Tsan [3]). Problem (2.1) has a unique solution salisfying

U (z)] < C{1+ et exp(—az/e)}, £20. (2.2)

Lemma 2.1 leads o the followsng lemma immediatly.
Lemma 2.2 The solution of problem (2.1) can be written in the form

Ue(z) = §Ve(z) + Z,(x) (2.3)

where |§] < C is a constant, Ve(z) = exp(—a(0)z/e), as(z) = /a(z)? + 4eb(z) ond

|Z£ﬂ (z}| < C{1+ e~*+! exp(—az/e)},i 2 0.
As for problem (1.1), we have
Lemma 2.3 (Smith [9]). The Solution of Problem (1.1) can be written in the form

Uu(z) = Au(z) + CoB(x) exp(~ [o " a(z)ds) + Re(X) (2.4)

where |Co| < C is a constant, IAy)(::)l < Ct2>0,B(z) = ﬂ(lx) exp ( - f z—[[z-)jda) and
0

R.{z) satisfies
LeRe(z) = Fe(z), 0<z<1],
R:(U) = 0, Rl(l) e ﬁ(E]:

where
1Ble)| < C,|\F¥) (z)| € C{1 + ™" exp(—az/e}}, ¢ 2 0.

Summing up the above lemmas, we conclude
Theorem 32.4. Problem (1.1) has a unigue solution which can be ezpressed as

U,(z) = Ae(x) + CoGelz) + eRe(2)

where

G(z) = We(z) B (2), Rz) = 6Ve(z) + Zo(2)
and |Col, |6] € C are constants, IAg)[:rH < C,1 20,

- s [ B ) (- [

Vo(z) = exp(—a(0)s/e), |28(=)| < C{1 + &+  exp(~az/e), i20.

. It is clear that IWP) (z)| < C,s > 0. For the sake of convenience, the subscripts € in the
symbols of operators and functions will be omitted.
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§3. The Difference Scheme and Its Basic Properties

The scheme was derived by El-Mistikawy and Werle by a piecewise constant coefficient
approximate differential equation. Now we describe the process briefly. Let [0, 1] be divided

into N uniformly spaced mesh intervals, with mesh spacing h = 2 and with mesh points
zj = 3k, 3 =0,1,---, N. Let a; = a(z,),b; = b(z;), f; = f(x;). Consider the problem

L;,,Up.[:r) = EUf =+ ﬂhU;. m— thh = fh, O0<z« 1, (3 1)
Un(0) = Bo, Un(1)=5 '

where ax(z) = (a;-1 + 0;)/2, 2 € [z;_,, 7,] and bs(z), fn(=) are similarly defined.
Problem (3.1) has a unique generalised solution Uy, (z} in C'[0,1]. Let U; = Up(z;) for
0 <y < N. On each small interval [z;..,,z,], solving the constant coefficient ordinary

differential equation
LpUn{z) = fa, Tj-1 < T < Z5,
Uh[mf"ll = UJ""II U};(Ij] = UJ‘.

We can express Uy(z) by U;_; and U;. The contiunity of the first derivative of Un(z} will
lead to the difference scheme which determines {U;}/,

(3.2)

Eh—ﬂ(r; U;'_.lﬁ"l- I‘;UJ‘ + r;!-UJT+1) = q; fj—l + q;fj g & q;*'.fj+1: 1< J < N - 11
U'D s ;Bﬂ: UN = ﬁl'

This scheme is called completely exponentially fitted difference scheme and written in the
simple form

(3.3)

RMU; =Q"f;, 1<j<N-1,

Bt  Pa= i, k)

where

R*;=eh ™ (r; V-, + Vi +ri Vi), QM= Voo + ¢V, + a7 Vit

and

r; = exp(nij)/9(ni; — ki5), f_;" = EIP(—kﬂj')fg(“ﬂ.f — kaj),

i g 1/9’(“1;’ _ kl_f]: rog = kﬁ_f 2 1)!9("'21 — kﬂj): r;? = 14 -+ L T (3 5)
g7 = [9{n1;) — exp(ny;)g(—ki;)lp(n1; — k1), |
;" = o(=ks;) = exp(~ka;)g(na;)lplna; — kay), 4} =qf +af,

g(m) = lexp(m) — 1|/w, ¢(0) =1; p(m)=1/2[1 — exp(m)}; k., /A

denotes the nonnegative root of the characteristic equation of (3.2) and n1;/h denotes the
negative root; k2, and njy; can be defined similarly,

a7 — a; + a: at —at ﬂ}*‘*l-a;?‘




4 LIN PENG-CHENG AND SUN GUANG-FU

‘The key to the research on the scheme (3.3} lies in choosing dominant algebraic quantity.
Let p{z) = ha(z)/e, and (3.5) can be simplified as

r; = ryexplkyy), rf =rl;exp(—ka),

rj=—kij—ryy, rag=lkayy—rl, ri=rytry,
i - +
s Exp{kl.f] — | ; £ - 1 gt = exp__(_ké’.) ol ; &) + _1 ¢ = q+ e q'f'
g klf 2“1,‘ 21’11_1" ! kg_,* 21’!43_-,' 2“2_," y ] 33
where
. _ by exp{—p5) + 2 F F
r,, = — = r,, = — pT = ha /e.
I 1—exp(-p7)’ Y 1-exp(-pf) i

The subscripts j in v, g, , etc. will be omitted in the following when there is no confusion.
The scheme (3.3) is determined by r—,r*,7°,97,¢" and ¢° and these quantities can be
expressed by r; and r}. Hence, it will be convenient to deal with scheme (3.3) by means

of the properties of r; and r].
Definition 3.1.

p exp(=p) rm(0) =1 r¥(p)= —2 ry(0) =1,

#la) = e o e ———

q:(P)=1_;;(p), g7 (0) = 1/4; q;"(ﬂ)-—r“;l_lr qv (0) = 1/4.

Remark 3.1. The functions in Definition 3.1 are C*° on R’ and for p € R'; it is true

that -
ro(p), rtle)ias(p), af(p) >0,

Dory (s} <0, Dpr:l—{p) > 0, qu: (r) <0, qu;l- (p) > 0.

Remark 3.2. We have the following power series expansions about p = 0,

r:(P) =1 sz+92f12+ﬂ(p‘), r:'(p) = 1+Pf2 + Pifllz +ﬂ[,0‘),
ar(p) = 1/4— p/24+0(s%), gt (p) = 1/4+p/24+0(s°).

Remark 3.3. For p > P,

Dir: (p)| < Cpexp(—p) < Cexp(—p/2), 0Li<2,
r(p)| < Cp, |Dord(p)| < C,

- (P) £ Cp~Y, |Dogi ()| £ Cp77%,

lgd (p}] < C,

where P is a constant independent of h and e.

Remark 3.4.
k| < Chl s = 1,2,
ahe™! < |ng|, pT < Che™, 4

1,2.
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Definition 3.2.
r-(p7) =ri(p7)exp(kr), r~(p7) =rl(p7)exp(kz),
rt(p”) =ri(p”) exp(~k1), rt(p") = ri(p) exp(—ka2),

.-y _explk1) -1 ro(p”) 1
g (o7} g =

, ¢ {p7)=ar(p"), ford™ =0,

2n4 2n,
= +_‘""P(k‘3)_1.r:(f’+)__1__ “(pt) = g (pF), fordbt =0
g (") » o B 1 (p*) = g- (o), for ,
pmy o P(=R) -1 r(eT) Y oy — et (o). for b- =0
q (P ) kl 21’11 + 21’31. q (P ) A (P )l or ]

g + { ot |
o) = ZRER) 2L e leT) 1 ey C gk (p*), for bt =0,

kg 2n,y 2n,y
Remark 3.5. The algebraic quantites in Definition 3.2 have the following estimates:
1

—(oF)| < - +(,TY| < e
= (67)| S Coxpl-abfe), Ir* (57| < Ch—pies,

g 1

) —(oF)| < +{,F)| <

la~(p )l“c"mu(h,s]’ g7 (pF)| < C,

r(6%) =+ (57) | < CeM K exp(—ah/e),

1

“(pt)—q (p7)| € Ch? :
la" (") — a7 ()| < Ch T

Remark 3.6. r— >0,rt* >0,—r  2r .—rg2>rt,¢g” >0,9q7 > 0.

§4. Analysis of the Truncation Error

The truncation error for the scheme (3.3) can be written in the form

7 (U) = R*(U(z;) — U;) = RPU(z;) — QP(LU(z;)) = E TUY(2;) + Ra(U)  (4.3)

1=0

where
T® = eh=3(r~ + r° — r+) + (bj-1¢" + b;q° + by+19),
T1 == Sh-l(—f_ =+ ‘l"+) - [ﬂj—lq- -+ ﬂjqc -+ ﬂ,‘+1q+) -+ (“;bj—lq- + b,f+1q+]:

hﬂ
T4 = —E(r‘ +rt)—elg” + ¢ +qt) — h(—aj-19" + a;41¢7) + ?(b:'-lq_ +by4197),

e :2 f: [(—l)ir' - r+] = E(:i-:)! [(“'1)'7'5’# % q+]

hi——l : hi _ ’
(= 1) [(— 1)'"11!1,'-‘1!1- -+ u,-+1q"'] + T [( 1]‘6_1'-1&'- + b,*+1q+],3 <s<n,
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R;(U) = l""""'-g["_Rl'l("’;.ﬁ3".1""'11 U) i r+Rﬂ("‘J'1“J'+ll U)]

—e[g™ Ra-2(%, 2j-1,U") + g% Rn—2(2;, %541, U")]

(4.2)
_[ﬂj-lq-Rn—l (I:'l Ly=1y Ut) -+ ﬂj+1q+Rn+1(mjr L5411 U’]]
+[b.f-1q-Rn(zJ'= Ti—1» U) o b:.r'+lq+Rn{I.f= Ti+1, U)]
| L b — a)*
Bale,be) = o)~ 3 0@ "
= (4.3)
- n+1 1 b
= g(ﬂ+1) (f)( (n :)1)! . n: L (b _ E)HQ{H+1) (3)d3

Here £ is a point between the points a and b.

The first step in estimating the truncation error is to show the following

Lemma 4.1. The algebraic quantities T* (i = 0,1,2,3) from (4.1) satisfy T® =0, IT%| <
Ch2, for1 =1,2,3. '

Proof. Tt is obvious that T° = 0. From (3.5),

TV = eh~}—r~ +r+) —2(a~q" +atgt)+h(—b"q™ +btgt) + O(h?)
= Th+ 1 + O(4?)
where
T! = eh= (r~ (o) + r¥(s)) — 2a* (g (%) + ¢ (%)) + AE¥ (=" (p*) + 7" (p7)),
T} =eh~Lr—(p*) —r(p7)) +2(a*q (p*) —a g7 (p7)) + h(bT g7 (p") —b7¢7 (7))
Using Definition 3.2 and Remarks 3.2, 3.3 and 3.4, we can obtain |
| atk, bt pt 2

1 1 A" VP 2 2
T (2¢h™ " K3 wag b ) > Coth > 1) + O(h*)
| N +Y _ bt ot +
-25{1 (ﬂt — ) Eb P p___ n
and so
T} < CK.
Next, as
I = £ e g o] 3 lﬂ+k2_ﬂ_k1 .
1} = (54 D)t = )Drs () + ke — )+ 5(5F - ()
; ﬂ+ a- = 2
(S = ) () ~ 1) + O(A),

estimating T for the two cases 0 < p < P and p > P respectively, we can obtain
T3} < CR?,

hence

1T < CR2.
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Similarly, we can prove
1T?| < Ch?, IT3| < Ch2.

The proof is completed by combining the above results.
We estimate the truncation error by using the “Method of Singularity Decomposition”,
Let n = 3 in {4.1). From Theorem 2.1, Lemma 4.1, and Remark 3.5, we can easily see
Lemma 4.2. If {A;} s the solution of

R"A; = Q"(LA(z)), 1<j<N-1
Ao = A(0),  An = A(1),

then
l7,(A)| < Ch? fori1<j3;< N-1.
Lemma 4.3. If {Z;} s the solution of

R*Z; = Q"(LZ(z;)), 1<j<N-1,
Zg = Z[O], ZN = 3(1),

then for 1< 3 < N —1,
#

r:(Z)| < Ch? + Ce~%h? exp(—az; /e for h <e,
3 ]

1:(Z)| < Ch® + Ceh~ ! exp(—az;-i/= for h > &.
j ]

Proof. From Theorem 2.1,
1Z8)(z)| < {1+ &~ exp(—az/e)} for s > 0.
We first consider the case that h < ¢. Letting n =3 in (4.1) , we have

;(Z) = iT‘Zm(z,-) + Ry (Z).

+=10

Clearly,
3 ) F
IZ TZ(‘](zJ-)| < Ch® + Ce *h® exp(—~az;/e) for 1<j<N-1.
1=0

By using |r*| < C,l¢*| € C,|r7| £ C,l¢7| £ C,exp(—aé/e) < Cexp(—az;/e). when
¢ € (zj-1,%;+1) and the differential form of (4.3), we can obtain

leh~2r* Ra(x;, 2541, Z)| < Ch® + Ch*e™? exp(—az;/e) for 1<) < N-1

and similar estimates for |eqt Ry (z;, 241, Z¥)|, la;4+191 Ra(z5, %2541, Z")|, |bj4+19™ Ra(z;,
Lg+1; Z”r Ish_zr_ RS(mJ'J Li—-1, ‘Z] l! I“J'-lq_Rﬂ(I.f: Ty-1s zl)l ) IEq_Rl (Ij: Z5—1y Z")',
|b;-19~ R3{z;, Tj-1, 2.
So
|IR3(Z}| < Ch? + Ce 2h? exp(—az;/e) for1 <)< N-1
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In the case h > ¢, we let n = 2 in (4.1) and obtain
2 " "
;(2) = ) T'Z¥(z;) + B3 (2).
=0
In what follows, we will use this inequality repeatedly:
t' - exp(—t) < Cexp(-t/2) (4.4)

where t > 0 and 7 is any given positive integer. It is easily seen that

2
|E fl‘iZ{i}(m,-]l < Ch? + Ceexp{—az; /¢) for1<j<N-1

1=0

From [rt| < Ce th,|¢t| < C,exp(—aé/e) < exp(—az;/e) with £ € (z;,2;+1), and the
differential form of (4.3) and noticing (4.4), we have

leh™2r* Ry(25, %741, Z)| < Ch? + Ceh™ exp(—az;/e)  for1<j< N -1

and similar estimates for |e¢t Ro(z;, 2541, 2")], |aj+197 Ri(z5, 2541, Z')|, and |b;4 19" Ra(z;,
»

Zi+1, 2.
Similarly, we can prove that

leh 2 Ry(z;,z;-1, Z)| < Ch® + Ceh™" exp(—az;-1/¢€) for 2< ;< N-1
and similar estimates for
|Eq— RU(IJ': -TIJ'+1: Z") |1 |GJ"—'1‘?“ Rl(x.fi Ti+1, z:) |!

and
bj—19~ Ra(z;, IJ'-I:Z)l'
For 7 = 1, we use the integral form of {4.3}. Then,

2
eh= - rf Ra(h,0,2)| = leh~2r] Ru(h, 0, 2) + —2"(h)]
h
< Ceh™? f [1 +e 1 exp(—an:[s]] dx+ Ce [1 +e ! exp(—ah/z)] < Ceh™*,
D

Similarly, we can obtain the estimates for |egy Ro{k,0, Z")|, laog! R1(h,0, Z')| and |bogy R2(A,

0, Z)|. Hence,
|IR3(Z)| € Ch? + Ceh™ ! exp{—az;_1/€) for 1<j<N-1

and the desired result follows.
Corollary 4.3. For {Z;} in Lemma 4.3,

175 (Z)| < Cs_lh2{1 + = EKP(—Hmj'_;l/E)} for f £ 4 £ N1

max(h, £}
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Lemma 4.4. If {V;} 1s the solution of
RM;=Q"LV(z;)), 1<j<N-1,
Vﬂ — V[U), VN — V(].),
then, for 1 < J < N — 1, the following hold:

l77(V}| < Ce™2h% exp(—-—aa:_,-‘js) when h < g,
|r#{V}| £ Ceh™! exp(—az;_; /e) when h > =.

Proof. Instead of using the Taylor expansion of the truncation error we estimate directly
(V) = R* (z;) - Q"(LV (z;)).
Setting " = R*(V(z,)), 77 = Q*(LV (z,)), we have
1" = eh™?[r™ exp{a(0)h/e) + r1 + r2 + r* exp(—a(0)h/e) ]V (2;),
79 = [¢76;—1 exp(a(0)h/e) + (¢~ + ¢7)8; + q* 8541 exp(—a(0)A/e) |V (z;)

where §; = é(z;) = a{0){x(0) — a(z,))e~! — b(z;).
We first suppgse that h > ¢. Let M denote those quantities which satisfy |M| <
Ceh™! exp(—dtz;_,/2). We first estimate |77]. From Remark 3.3, it is clear that

T =1, +M
where
7 = eh™*[r] (p7) exp(al(O}h/e) ~ r (p7) — rF(o?) + rf (p7) exp(—a(0)h/e) [V (z;).

This can be written in the form

rf = eh™2r} (p%)[exp(a(0)h/e) — 1][::1;; — exp(—c(0)h/e]V (z;).

We can prove that when A < C,(C, > 0 is a constant independent of ¢},

77| < Ceh™ exp(—az;/e)  for 1<j <N -1,

B
7] < Ceh™' exp(—az;fe) for1<j< N -1

We next estimate |r9|. Since
(z;)] = |«(0)[(«(0) - a(0)) + (a(0) — a(z;))]e™" — b(z,))]
< Ce™ 1z, for 1<5j<N-1
we immediately see that
(¢~ +¢%)6;V(2;)| € Ceh™! exp(—az;/e) for1<j<N-1,
gt6; 411V {z;41}] £ Ceh™lexp(—az;4.1/€) for l<j< N-1,
¢ 8;-1V(z-1)] £ Ceh™! exp(—az,-,/¢) for2<s;<N-1.
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For 7 = 1, we find
la7, 8oV (0} = |a1 [(0)(a(0) — a(0))e™! — b(0)]| < Ceh™.

Thus
Ir9)| < Ceh™?} exp(-ﬂIJ'—I/E) for1 <4< N-1

*

and then
(V)| < |77+ |7% < Ceh™? exp(—azj_1/¢) for1<;j<N-1

To bound |7;{V)] in the case h < ¢, we let M denote those quantities which satisfy
(M| < Ce ?h2 exp(—az;/e). Then

fr=fE+T{+T£+fg+M

where

75 = eh~2{r7 (o~ )[exp(a(0)h/e) — 1] + r (p*)lexp(—a(0)h/€) — 1]}V {z;),
i =k {Ralry 27) exp{a(0)h/e) — 1] — ka[rd (p+) exp(—(0)h/€) — 1]}V (2;),

1§ = eh=2[Lkirs (57) expl((0)h/e) + 3Kir (%) exp(~alO)h/e)IV (=),
i = sh'ﬂlékfr: (p')exﬁ(a(ﬂ]h[a:] - %kgrf (pt) exp(—a(0)h/e)}V (2;)-

It can be showed that

TE.' = ﬂu(ﬂ:u —_ ﬂ!_f)E—IV(Ij) + M,

s = M.
Hence |
rm = §(z;)V(z;) + M.
Similarly,
4 =g+ +1]+M
where
) P —(,- A
3 = —{ g (o1 explalO)h/e) + 5] + 5ot (s expl-a(0)h/e) + 1}V (=)
ri = { ——kLr' (p7)|6;-1 exp(a(0)h/e) + & 1+ —kz—r"' (p1)[6;+1 exp(—a(0)h/e) + 6-]}V[:r )
1 4’11 3 J 3 4112 # J J J 71

= {1’2‘31 /= (0 )[65—1 exp(a(0)A/e) + &5] - 1—2‘%—21‘1' (6% ){6541 exp(—a(0)h/e) + &1}V (2):
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We have 3
0 = —~8(z;)V(z;) + M,
e K
f = So(z)V () + M,
3 = M.
So

r? = §(z;)V(z5) + M.
We conclude that
(V)| £ Ce™*h? exp(—az, [e), 1<j<N-1

The proof is then completed by combining the above results.
Corollary 4.4. For the {V;} in Lemma 4.4,

1
max{h, &)

Lemma 4.5. If {G,} is the soluison of
RMG; = Q*(LG(z4)), 1<j< N-1,
Go = G(0), Gx = G(1),

(V)| < Ce™2h2 exp(~az;_1fe), 1<jSN-1

B

then
1

max(A, )
Proof. We write 7;(G) = 7" — 77 where " = RM(G(z,)),7® = Q"(LG(z;)). Let M

denote those quantities which satisfy |M| < Ch? mu:h, ” exp(—azx;_,/€). |

In the case h > &, we first estimate |r9|.G(z) is written in the form

[7(G)| < Ch? exp(~azj-1/e)  for1<j<N-1

G(X) = B(z) exp(~~ L als]ds).

Then

LG(z) = eB"(z) exp(—% /r; a(s)ds)

and
| LG(z,)| £ Ceexp{—az;/e) for0 <7< N.
From Remark 3.5, we obtain immediately

Ir < lg” LG(z5-1)| + |¢°LG(z5)| + |¢7 LG(241)]
< Ceexp(—az;_i/¢) for1<);<N-L
To estimate |r"|, we write G(z) = W(z)E(z) and S(k,m) = exp(*--%/. " a(s)ds) and
W,; = W(z;). Then B

" =eh™H{r"Wi_1 + (r1 + n2)W;S(7 - 1,7) + W41 8(5 — 1,5 + 1) } E(z;-,)
=mnt+rn+M
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where

5= eh~H{rI(p"Wi-1—(rs(07) +r(p1)W;8(5 - 1,7)
+r(pt Wi S(5 — 1,5 + 1)} E(z;-1),

i{= eh 2{kyr] (p7)W;-y ~ (k1 — k2)W;S8(5 — 1,5)
—ker} (pF)W;s18(5 — 1,5 + 1) } E(z;5-1).

It can be showed that

15 = —eh™2kW pexp(—p) E{z;-1) + M,

i = eh=2kW pexp(~p) E(z;-1) + M.

So
77| < Chexp(—az;_,/¢) for1<j<N-1.

In the case h < &, we also first estimate |r?|. From G(z) = W(z)E(z) we have LG(z) =
H(z)E(z), where |

H(z) = (~o'(a) + 2 - 22D _ ) (0) + (~2a(a) + a(@)W'(X) + " (2).

£
Clearly
|LG{z)| € Ce, IHW(z)| < Ce, £20.
We find -
= Tﬂ + 1"1 -+ 'r, +M

where

f‘*=-—{p—_- ~(p~ )| H;-15(s '-—1)+H-]+f— (o) H; + Hj418(05,7 + 1)]}E(z-)

0 nlqak £ 3—-1 JrJ 3 nzqt P 3 F+1 7:2 1)

k 35 ah R
= {T,:l"r: ("W H;-18(7,5 — 1) + Hj] + 1%': (") H; + H;115(3,5 + 1)]}E(m"]’

3 2
o 1:;1 rr (7)) Hi=18(4,5 — 1) + Hj] 1:;2 vt () H; + Hy41S0i,5 + D)} E(=5).

It can be proven that

0 = H(z:)E(z:] + M,

k"
1] = ;H[If)E(IJ) Es M_: =M.

Hence
9 = H(z;)E(z;) + M.

Finally, we estimate |r"|. We see that

. =1+ttt + M



A Completely Exponentially Fitted Difference Scheme for a Singular... 13

where
16 =eh 37 (p7)W;—18(5,5 — 1) — (r7(p7) + rH (¥ ))W; + £} (03 )W;415 (5, 7 + 1)) E(=;5),
] = eh 2 [kyr] (p7)W;_18(5,5 — 1) — (k1 — ka)W; — v} (pH )k W;418(5, 7 + 1)) E(=,),

1 - 1 -
r3 = ehTi 5 - Kiro (0T )Wi1S(,5 — 1) + SRS (0 )W5s1 S35, 5 — 1)) E(zy),

1§ = Eh‘“[%kfri (P~ )W;-18(5,7 - 1) - %kgrf(ﬂﬂwfﬂs (9,7 + 1)| E{z;).
We can prove that
o s sh"gl[———a{x—'hwj — hW2)p + RIWHE(z;) + M,
11 = eh™*(kW;p — 2hkW]) + M,
r; = ch™2k2W,; E(z;) + M,
s =M.

So

@ » = H(I_f)E(ﬁj] + M
and we have -
I7;(G)| < Ch%e™! exp(—az; /¢) for1<j<N-1

The proof i then completed by combining the above results.
Putting together Lemmas 2.2, 4.3 and 4.4, we obtain the bound of the truncation error

for scheme (3.3). For 1< < N -1,
7;(U)| € Ch? + Ce~2h2 exp(—az;/¢) when h < e,

;(U)} £ Ch? + Ceh™t exp(—az;_, /&) when h > .

From Theorem 2.1, Lemma 4.2, Corollaries 4.3, 4.4 and Lemma 4.5, we conclude

1
max(h, &)

r(U)] < Ch {1+ exp(—azj_1fe)]  for1<j<N-1L.

§5. Principal Theorems

We first establish the Maximum Pronciple and the Comparison Theorem.

Lemma 5.1. Suppose {V;} 13 a set of Values at the grid posnts z; satisfying R*V; > 0
Jor 1< 3 < N-1L,Vo<0,Vy <0. Then V; <0 for0< 7 <N. .

Proof. From Remark 3.6, r~ > 0,rt > 0,—r° = —r; — 7o > r~ + rt, the matrix of
coefficients is an M matrix and so the result follows [10].

From Lemma 5.1, we immediately see

Lemma 5.2. Suppose {v;} and {V;} are two sets of values at the grid points z; satssfying
|[R*vj| < RMV; for 1 < 5 < N —1,|vo| < =Vo, |un| £ =V;,. Then |v;| < V; for0< 5 < N,

For the reat of this paper, it will be convenient to take A as bounded above by some
“small” constant {independent of £). This is permissible by uniform boundedness of the
solutions U(z) and Ux{z).-
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Lemma 5.3. Let o; = -2+ x;. Then , when h< Cy, RPp; 2 C for 1<j < N - 1.
Proof. Clearly, R*p; — Q*{Lp(z;)}) = O(h?) and Q*(Le(z5)) = ¢ a;—1 + ¢°a; +
g% a;41 > ag”. From Remark 3.1, when A < C), we have

So

This completes the proof. |
Lemma 5.4. Let yy; = —exp(—Pz;/e). Then, when h £ C1,0 < 8 < a, we have

1
max/(h, €)

R*; > C————exp(~fzife)  for1<j<N-1.

Proof. Set p = exp(—pBh/e). Using r* < —(r~ 4+ r7) and ¢; < 0, we have

R*p; 2 eh™3(r~ ;1 — (r~ +rH)e; + rtipi)
= eh™?exp(—fBz;—; /e)rt (1 — p)(p — r_

The result is obtained by estimating the individual factors in the above expression for the
%ﬂe cases (a) p < po, (b) p 2 Po, and (¢) po £ p < Py {for appropriately chosen pg and

For case (a) and for po sufficiently small, r+{p*) > C,1—u > Ch/e, :: %p:; > Chje
and then R"¢; > Ce~!exp(—pPz;/¢). For case (b) and for P, sufficiently large, r*(p*) >
Chie,1—u>C, us ::{i:'} C exp(—pPh/e), and so RP¢; > Ch~!exp(—pz,/e). For
case {c) {po and Py are now fixed} and for h sufficiently small, r*(p™) > C, 1 — u >
C, u F AR > C, hence R*y; > C : exp(—f8z,/e).

max(h, €)

The proof is completed.
Corollary 5.4. Let x; = ¢, exp(fh/e). Then

1 .
— R <] - 1.
R X5 2 cmax[h ) exp( ﬁ:r,_lfs), for1<j<N-~-1

From the estimates of the truncation error at the end of the last section and Lemmas
5.2, 5.3, 5.4 and Corollary 5.4 in this section, the main results can be deduced.

Theorem 5.5. Let {U;} be the approzsmation to the solution U(z) of (1.1) obtasned

ustng (3.3). Then there are positive constants § and C, independent of e,h and z;, such
that for0 < 1 < N

|U(z5) — U;| < Ch? + Ce~1h? exp{'—;gz‘,-/z), when h < g,
|U(z;) — Uj;| £ Ch? + Ceexp(—Pz;-1/¢), when h 2 &.

Theorem 5.6. Let {U;} be the approzimation to the solution Uz} of (1.1) obtatned
using (3.3). Then there 1s a positive constant C, independent of €, h and z;, such that

|U(z;) = U;| < Ch? for 0< 5 < N.
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