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Abetract

This paper presents a method of finding a strictly feasible solution for linear con- -
straints. We prove, under certain assumptions, that the method is convergent in a
finite number of iterations, and give the sufficient and necessary conditions for the in-
feasibllity of the problem. Actually, it can be considered as a constructive proof for the
Farkas lemma.

§1. Introduction

In this paper we consider the following problem: to find a vector 2(%) > 0 which satisfies

the linear constraints ,
» Ax = b, b A 2 0 (1.1)

where A is an m X n real matrix with rank m, b is a real vector in R™, and z is a real
variable in B”. A vector (%) is called a strictly feasible solution if it satisfies (1.1) and all
its componentz are positive.

~ This problem arises in solving the standard form of linear programming using an interior
point method [7], {8], and minimizsing the problem of a nonlinear objective function with lin-
~ ear constraints by means of barrier and penalty functions. Especially, a new polynomial-time
algorithm for linear programming [4] was presented in recent years, It is a great improvement
on complexity, and furthermore, is said to be 50 times faster than the simplex method for
practical problem, Unfortunately, no further information on the test problems or experimen-
tal procedures was given. Therefore, it has arosed extensive attention and discussion. The
idea of the new algorithm originated from the techniques of solving nonlinear programming
problems. Obviously, the essential difference between the new algorithm and the simplex
method is that it finds the optimal solution from the interior feasible direction of the con-
strained region. On the other hand, a similar result can also be deduced from a projected
Newton barrier function [2] and the penalty function method [3]. As is well known, these
methods all require a strictly feasible starting point for minimisation, and generate a se-
quence of strictly feasible solution. So, how to find an initial strictly feasible solution for
problem (1.1} in practice is an important problem.

This paper presents an efficient method of finding a strictly feasible solution for problem
(1.1). In fact, the method can be introduced directly from the interior point method, and it
leads to computational simplicity. In Section 2 we describe the algorithm, and show how to
start it, when to stop it, and how to easily identify infeasibility. In Section 3, under certain
assumptions, we prove its convergence to a strictly feasible solution in a finite number of
iterations, and the sufficient and necessary conditions for the infeasibility.
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§2. Feasibility and Algorithm

In this section, the necessary and sufficient conditions of the feasibility for problem (1.1)
are briefly discussed, and the sufficient conditions of the existence of a strictly feasible
solution are given, we give an algorithm for finding a strictly feasible solution in a finite
- number of iterations or indicating infeasible conditions for problem (1.1) in the case of
nondegeneration, because the degeneration case is too complicated to be discussed here.

Concerning the feasibility, actually Farkas’s theorem has shown the necessary and suffi-
- cient condition of feasibility for problem (1.1). .

Lemma 2.1 (Farkas Theorem). Suppose that A € R™%" b€ R™. Then problem (1.1)
15 feassble if and only if for all the nonzero vectors y € R™ which satisfy ATy > 0, the
Jollounng tnequality holds:

5Ty > 0.

Obviously, the existence of the strictly feasible solution is not garanteed when problem
(1.1) is feasible, Therefore, it is necessary to have a strong condition in order to ensure the
existence of a strictly feasible solution.

Theorem 2.2 Suppose that rank(A) = m, and that problem (1.1) ts feasidble and nonde-
genrate. Then there 13 a sirictly feasible solution. '

A constructive proof of the theorem is given in Section 3.

Now we descrfbe our algorithm. Assume that z(%) > 0 is a given vector.

Algorithm A:
Let k = 0, and let an initial starting point z(%), be given
(1) Define

Dy = diag(zik], z{;}, o, 2l (2.1)
Ak — .A.Dk (2‘2]

and compute the residual vector
r*) = p— Az(®), | (2.3)
(2) Compute vector
p'¥) = AT (4, AT)¢(®), (2.4)
If p{*) < 0, and bT (Ax AT )~ 1rl%) > 0, stop; then problem (1.1) is infeasible. Otherwise, go

to the next step.
(3) Chooee the minimum component of p!*), and let

P = min{p™). (2.5)

If —1 < B, then
2:+1) = z(¥) 4 D, p(8), ' (2.6)

'fhuu, z(*) is a strictly feasible solution for problem (1.1}, stop. Otherwise, go to next step.
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(4) Select a suitable value of o, and compute
z(k+1) = 2(¥) 4 o Dy pl*) (2.7)

guch that z(**1) > 0, where ax € (0, 1).

Let k : k + 1, and return to step (1).

Actually, algorithm A can be deduced directly from the interior point method for linear
programming [8]. This will be discussed briefly in Section 3 in order to prove the necessary
conditions for the infeasibility.

It is clear that the main computational work at each iteration is from step (2), which
ensures reduction of the Euclidean length of the residual vector.

§3. Finite Convergence

This section deals with the finite convergence of algorithm A, and the sufficient and
neceasary conditions for infeasibility of problem (1.1).

The main results are described as follows:

Theorem 3.1. Suppose that problem (1.1) s feasible and nondegenerate, and that
rank(A) = m. Then a strictly feasible solutton can be obiasned in a finite number of sterations
by algorithm A. -

Theorem 3.2. Suppose that the rank of matriz A 1a m. Then problem (1.1) 1s infeastble
if and only sf there ezists an integer k > 0, such that

p*) <0, sT(ADZAT) ) >0 (3.1)

where pl®) 15 defined by (2.4).
The following two lemmas are introduced in order to prove the two theorems.

Lemma 3.3. Suppose that the rank of matriz A is m, and that problem (1.1) ss infeasible.
Assume y'¥) = (ADEAT)"Ir. Then there exists an tnteger k > 0, such that

ATy*) <0, sTy®) >0 (3.2)

where D). and r are defined by (2.1) and (2.3), respectively.
Proof. Now Consider the linear programming LFP which is equivalent to problem (1.1):

LP1 : Min {
s.t. Az+ri=b (3.3)
z,t >0 (3.4)

where r = b — Az(®_ and 2(®) > 0 is a given vector. Obviously, z = 720 andt=1is 2
feasible solution of problem. Thus, the minimum value of porblem LP; is greater than zero
since problem {1.1) is infeasible.

Assume that a sequence {z{"),t;} is generated by using interior point method to solve

problem LP;. Then
g+ \ [ gzl D, (k)
( tk+1-)"( L )+6k( tk)CP 4
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where & € (0,1), and C'( ) is a projected vector of the objective function on the null space
of matrix (A, r), that is,

o =-( Dy " ) [( . ) g ( ‘:T )(AD’AT+t=rrT] 1rt=]

3.6
_ —D AT(ADZAT + 2reT) 1913 5.8}
tk[l ~rT(ADZAT + 2rT)"1pi2] |-
By Sherman—Morrison-Woodbury formulal®l it is easy to show that
2 4T\~-1
(AD2AT + 2¢rT) " iy = Sl M (3.7)

1+ 3rT (AD3AT)-1y’
Substituting (3.7) into (3.6) gives

ol t * —D,.AT(ADgAT)-lrt,,) (.5)
P 1+423¢T(ADIAT) 1y 1 ' *

Let

(ADZAT) 1rt?
15 217 (ADZAT) 17"
_ Opti

1+ t2rT(AD2AT) 1y

Thus, it follows from (3.5}, and {3.8)—(3.10) that

s glk) = (3.9)

&

(3.10)

z(5+1) = (k) 4 5, D AT gk (3.11)
k41 = (1 — &j‘)tk. (3.12)

Because problem (1.1) is infeasible, there exists a t* > 0 such that
lim ¢, = ¢t*.

koo -

From (3.9), it is easy to show that for all integers k > 0,

rT _(k) tErT (AD:AT)—IT
g T t2rT (ADZAT) -1y

< 1.

Evidently, #*) is an approximate solution for the dual problem of problem LP,. It
follows from the strong dual theorem of linear programming that there exists a sufficiently
large integer kg > O, such that for all k > kg,

D.ATg®) <o, 8Tg*) > 0.
From (3.9) and definition (2.1), it is clear that
t

1+ 2rT(ADZAT) 1y e
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and
D > 0.

Thus, let
y*) = (ADFAT) !r.

Then, it is obvious that for all k > ko,
ATy®) <o, Ty >0,

which proves the lemma. :

It follows from (3.11) and {3.12) that the interior point method for solving problem L P,
is equivalent to algorithm A. Because the new iterative points generated by the two methods
are both updated by the same direction p'¥) = (AL )T(AD2AT) " 1¢l*¥} the same sequences
{z*}} can be generated by the two methods as lor.g as we choose suitable ax and é.

Lemma 3.4. Suppose that the rank of mairiz A is m, and that problem {1.1) 1s feasible

and nondegencrate. Assume that the sequence {z(®)} 15 generated by algorithm A. Then
E = mEn{Ek} > 0, where Ej 1s the Euclidean norm about z(¥)

H A

Proof. Let 5 = {(t) . Az+rt=b,2>0,t >0,z € R*,t € R'}, where r = b — Az(%),

and 2(°) >0is a given’vector. It is clear that x = z(%) t = 1 is a feasible point of S. So, §
is 2 nonempty polyhedron. It is also easy to show that neither z =0, = 0 nor z = 0,t >0
is in set 9, it follows that there must exist a point 2,t in S such that

- 2 L2 = min 22 2y1/2 .
P \/“3"2"'3 (es =13 + %) }

Hence, for all k,

ox =\ llzW |3+ > 5>0.

The minimum value of LP; defined by (3.3) and (3.4) is sero because of the feasibility and
nondegeneracy of problem (1.1). Therefore, for a given sufficiently small £ > 0, there exists

an integer ko > 0 such that for all & > ko,tx < =. Thus, it is straightforward to establish

22 > /72 ~ 6 > 7 —e.

Hence
E = m;n{Ek} > min{&igl{Ek}, p—e}>0

which proves the lemma.
Lemma 3.5. Under the assumptions as tn Lemma 3.4, there exisis a large M > 0, such
that for all k,
1D AT(ADZAT) trfls < M.

Proof. Consider the problem LP, defined by (3.3) and (3.4). From the assumptions
that rank(A)} = m and problem {1.1) is feasible and nondegenerate, it is clear that problem

L P, is nondegenerate. Therefore, if the interior point method is used to solve problem L P,
- then for z > 0,¢ > 0, which satisfy (3.4), (ADZAT + t3rrT)~1 exists, where r = b — Az,



A Method of Finding a Strictly Feasible Solution for Linear Constraints | 21

It follows from (3.7) that (ADZAT)~! exists, too. As a result of the equivalence between
algorithm A and the interior point method for solving problem LP,, it is easy to see that
for all k, (AD{ AT}~ exists. Let Ey be the Euclidean norm about 2(*), Then

(AD{A")™! = (ADIE{AT)™" = (AD3 A7) /B2 (3.13)

where z®¥) = E 3 %) D, is a diagonal matrix with respect to Z(¥), Obviously, for all
k,(AD2AT)~! exists, too. Thus, there must be a large M, such that for all k,

1D AT (AD2AT) 14l < M;. (3.14)
From (3.13) and (3.14), it is straightforward to establish |
|1Dx AT (ADZAT) x|z = || By Di AT (EZADEAT) -1y,
= 5 I1DuAT(ADZAT) 21y < My /E

where £ = rr}:in{E;,}. It follows from Lemma 3.4 that £ > 0.

Let M = M, /E. Then we have proved the lemma.
The proof of theorem 3.1 is as follows:
By (2.3) and (2.7), '

r“""] =} - Ag(k} = - A[z(k"'” -+ ak—l-DL'_'—lp(k_l)l
=b— Az*" — gy ADy_;pl*-1) = (1 - ag—q)rE-1)

k-1 (3.15)
= H (1-— a;)r(“).
{=0
So substituting (3.15) into (2.4) gives
k-1
p*) = Dy AT (ADZ AT )~ 1p%) — 11 (1 - a) D AT (ADZ AT)~1,(0) (3.18)
=0
From Lemma 3.5, there exists a large M > 0, such that
| Dx AT (ADE AT) 1O, < M. (3.17)
Thus, by {3.16) and (3.17), there is an integer ko > O, such that for all k > ko,
le™ M < MI[(1- ) < 1.
{=0
Therefore, as long as & > kg, we have
—1 < PB,. (3‘13)

By (2.6} and (3.18), it is clear that

2k +1) = 2} 4 p ok} 5 g
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and

Azl*+) = A7) 4 ADp(®) = Az(®) = p,

So, z5+1) iz a strictly feasible solution for problem (1.1).
This completes the proof of the theorem.
The proof of Theorem 3.2 is as follows:
First of all, we consider the sufficiency of the theorem. Assume that there exists an

integer £ > 0, such that (3.1} holds. Namely,
Dy AT(ADRAT) %) <0, T (ADZAT)1.r%) >0 (3.19)

Let
yl*) = (AD;‘:AT)_Ir“’].

Then, (3.19) can be rewritten as follows:
D;,ATy{h} >0, bTy{k) > 0.

Thus, it follows from the Farkas lemma that there is no feasible solution in problem (1.1).

The assertion of the necessity of the theorem is an immediate consequence of Lemma
3.3.

The theorem iz proved.

Algorithm A described in Section 2 and the proof of its convergence can actually be
considered a constructive proof for the Farkas lemma.
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