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Abstract

The paper describes an interpolation procedure of formulating shape functions for
a new energy—orthogonal plate element. Sample problems using the new element show
satisfactory numerical results.

§1. Introduction

Bergan et al.[':2] have recently proposed the “free formulation® scheme of unconven-
tional finite element methods. The element stiffness matrix consists of two separate parts:
JE = N + K;#, where K, corresponds to constant strain modes of shape functions and is
independent of any form of high order modes, while K}, is determined by high order modes
based on a conventional energy consideration®]. The TRUNC element developed by Argyris
et al.!% is an example of Bergan’s free formulation scheme, which is proved to be convergent
for arbitrary mesh partitionsl*!. Reference 5] provides a mathematical explanation of the
free formulation scheme. It is observed that the scheme actually leads to a nonconforming
element method with a specific form of interpolation of shape functions. Reference [6] gives
a detailed mathematical analysis for Bergan'’s energy-orthogonal element based on the free
formulation (2], Its convergence together with error estimates are derived and a modification
of Bergan’s element with better convergence properties is proposed.

Bergan’s free formulation scheme has been stated in [1, 2] by mechanical considerations.
The derivation of the stiffness matrix K, corresponding to constant strain modes, however,
appears somewhat difficult of access. While the analysis in [5] shows that the matrix K, . Is
identical with the matrix resulting from the constant strain modes of Zienkiewicz’s incoms-
patible cubic element, the reason for choice of this particular matrix as K,. regardless of
any form of high order modes is still not clear at least from a view-point of mathematics.

The purpose of this paper is to present a modified scheme of free formulation in ac-
cordance with a simple convergence requirement of nonconforming finite elements. The
element stiffness matrix formulated by this modified scheme is again consisting of two sepa-
rate parts, one corresponds to constant strain modes and the other to high order modes of
shape functions. However, the stiffness matrix K., now is simply derived from the conver-
gence requirement. It seems a more direct way of derivation of K,. than that in Betgan’s
scheme. The treatment of high order modes leaves the same as before, using the conventional
method. Starting from the shape function space of Bergan's energy-orthogonal element, the
modified scheme provides a new energy-orthogonal element. Numerical experiments show
that this new element gives more accurate results than Bergan’s. The convergence proof as
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1) Dedicated to Prof. Dr. F. Stummel, University of Frankfurt, FRG, on the occasion of his 80th

birthday. |



76 SHI ZHONG-C1 AND ZHANG FEI

well as the error estimates are derived. Along the line of this paper a general nine parameter
unconventional element, not necessarily energy-orthogonal, may be constructed, which will
be analyzed in another paper.

§2. Formulation of Shape Functions and the
Element Stiffness Matrix

Given a triangle K with the vertices p; = (z;,y:), the area A and the diameter hx < h,
we denote by ); the area coordinates for the triangle K and put

£1 = T3 — %3, £3 = X3 — T, Ea=21—Z2, M=Y2—¥3, M=Y¥3— Y1, N3 = Y1~ Y2,
1'?=£i2+ﬂi2: ti=ﬂ?!’&: f,'=(€jfk+ﬂjﬂk)fﬁr S T ¢

i:.f:k;" 1,23, J':k#ir J“-/"k-

The nodal parameters are the function values and the two first derivatives of w at the vertices
pi, which are denoted by

w = (thlmwlys Wy, Wy, Way, W3, Wiy, Way)T- (2-1)

The space of shape functions under consideration is of the form
P(K) = span {1, A2, A3, A1A2, AzAa, AsAy, Ny, Ng, No }, (2.2)

where Aj, Az, ,AsA; are constant strain modes and Nv, Ng, Np are high order modes.
Every function w € P(K) may be written in the form

w=19%+uw {2.3)

with
W= a1 A1 + @Az + asAs3 + agA1Aaz + @gAgAs + agAs A,

w! = bTN*? + ngﬂ = ngg,

representing a constant strain term and a high order term, respectively.

In order to determine  we use an interpolation technique like the treatment of Morley’s
element!”]. Let the function value of & at the vertex p; be identical with that of w at the
same vertex, and the normal derivative of ¥ at the middle point of one side be identical
with the average of normal derivatives of w at the two end points of the side, 1.e.

@(pi) = w;,

"_'_(ij) — [( + (g_::)k] [ (w:.ls + wl::)’?i G = (wjy + Wi:n) Ei]:‘ = 1,2,3,
(2.4)
where n; denutes the unit outward normal vector of the side p,;px, opposite to the vertex p;,
and p,i is the middle point of p;pk.
‘The interpolation conditions (2.4) uniquely determine the six coefficients a;,s =1, -+, 6,
of @ as follows:
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a; =w, $t= 1,2,3,

84 = €12wy + ez1wg — (€12 + €1 )ws + :’—:wu 4 -’flum
1
1 M2 £2 3 &1 &
2 D - (642),
iy L t2 e t2 ey iy e th 2. e
ag == —(e2s + €32)wy + easwa + esqws + ("ﬂ;E + E) Wiz + EWZ:
ta ig ts (2.5)
n2 (fﬂ _@_) _s, _&
+ ta Wae L, + ta Uy ta W2y t, Wsy,

3 173 1
ag = e13wy — (€13 + €31 )wa + eayws + %?;wu I ( ot 2—) W,

m,. % _(&.«ﬁ) _&
+ t W3z ta Wiy i ! t Way t W3y -
(2.5) may be written in a matrix form
a=H.w , 8= [allﬂil'”:aﬁ)T: (2'6)

where H,. is a 6 by 9 coefficient matrix of (2.5), the interpolation matrix of %, by which
the constant strain term w is completely determined. In particular, if w is a quadratic
poiynomial, then @ = w.

The interpolation conditions (2.4} resemble those of Morley’s element. Indeed, it will
be shown that imposing these conditions on ¥ is an essential step to make the element
convergent.

Notice that the determination of 1 is independent of any form of the high order term w'
that 18 quite different from the usual procedure of formulation of shape functions.

The high order term w’ is determined by a usual interpolation process. For instance, if
the three high order modes are chosen to be those of Bergan’s energy-orthogenal element,
1.€.

N',r = (AL—' 1\3]3, NE g (Aﬂ o Aﬂ)an NB = (Aﬂ- . ’\1)3:
and if we let

w = biA; + baAg + bgAs + byA1 A2 + bAoAz + bgAady + be{A; — Ag)?
+bg (Ag e As)a 18 bg (Aa = AI)B =@+ w',

then, using the nine nodal parameters w, the coefficients b;,¢ = 1,2, ---,9, can be uniquely
determined. The three last coefficients in w' are as follows:
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by = "g(tﬂl — wy) + '514' [[3'{"3 — &1 )wnz + (6£3 — &2)w2e — €3W3=]

1
51 [(5'?3 = m)wiy + (613 — n2)way — "3“’3"]’

by = —g—(wg — wa) + -5-11[-* §1wis + (661 — £3)waz + (661 — fs]wa_;]

; (2.7)

AT [ — mwyy + (6n1 — n2)woy + (6m1 — ﬂa)w:iy]:
2 1
b = "“g(wa = Wl] + EZ [(652 G fl]wlz = fﬂwsz + (ﬁfz i ‘fﬂ)wﬂx]

1

+‘5‘Z [ﬁﬂz T ﬂl)wly — NaWszy + (3ﬂ2 == ﬂa)way] -
Writing (2.7) in a matrix form gives
b' == th 5 b= (b*r,bg,bg)T, (2.3)

where Hj, is a 3 by 9 coefficient matrix of (2.7}, the interpolation matrix of w', which defines
the high order term -w'. Again, if w is a quadratic polynomial, then b7 = bg = by = 0, 1.e.
w' = 0.

Combining (2.6) and (2.8) together in one matrix equation, we have

t = How, (2.9)
where -
re L &
(%) - (3)
Evaluation shows that
s 28
T 243°

hence H is nonsingular. Therefore, formula {2.9) defines an interpolation operator Ilx on
K such that

g : we H*(K) — llgw € P(K). (2.10)

More precisely, every function w € H>(K) is associated with a set of parameters w =
(W, Wiz, Wiy, W2, Wax, W2y, W3, Wsz, wsy)T, which defines a set of coefficients # by (2.9).
Then a cubic polynomial Ilxw € P(K) is derived from (2.3). Conversely, for a given cubic
polynomical Il w with the coefficient set £, since the matrix H in (2.9) is nonsingular,
there exists a corresponding set of parameters w, by which a cubic polynomial w € P(K)
may be uniquely determined. The nodal parameters of w at the vertices of K are identical
with w. Therefore, w € P{K) and IIxw € P(K) are in one-to-one correspondence.

Notice that, instead of a unified interpolation procedure in formulation of shape functions
as in a conventional finite element method, here, like Bergan’s scheme, we have used two
different interpolations independent of each other to formulate the constant strain term @
and the high order term w’ of the shape funciion w. Thus we obtain an unconventional
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method of formulation of shape functions. It differs, however, from Bergan’s scheme in the

derivation of the constant strain term using a rather simple convergence requirement.

. Now, taking Iy w as the shape function on K and w as its associated nodal parameters,
the usual procedure of formulation of an element stiffness matrix gives |

K, = HTK,H = H:-I;quc re 1 H-?;quehﬂh + HEK::-chHrc T HquhHh: _ (2*11)

where o
re ch
Kq = ( : " ): quc =f Bl?;DBrchdy:
K

Koron = B,?;.D.Bhdzdy, Kon = / B;f DBy dzdy,
K

a::I:Nll " Ry alr#Nﬁ | - aﬂNTl Ny a==Ng
Bﬂ: = anyll“':anyG ’ Bh - anyT:”':apyND ’
26:,”1, R 23:,-”3 23:-””7’ it 23;1,N9

Nl - Al,N: — Ag,Nj —_ Aa,Nq = .’qlg,Ng — Anla,Nu — 4\3}.1, O0<o < % Is the- Poisson
ratio. It is worth mentioning that the values of the nodal parameter set w do not, in general,
agree with the function values as well as the two first derivatives of the shape function II KW

at the vertices of K. ~
Decomposing the shape function [Ixw into two parts

Hew=Mgw+ M} w . (2.12)

with Tlx w representing the constant strain term and IT-w the high order term, since Iz w
and Il w are energy-orthogonal on K and thus the off-diagonal submatrices K., and

K7 ., in K, vanish, we obtain the element stiffness matrix as follows:

K= H KgH,.+ HBY Ko Hy = Ko + K, (2.13)

- [ Kere O
K' . ( 0 th) ?
where K., corresponds to Nxw and K, to II% w; there are no coupling terms in K,.
Application of this new element has been done for sample plate bending problems. Nu-

merical results (see Tables 1-4) show its advantages over Bergan's energy-orthogonal ele-
ment. .
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§3. Convergence Analysia

Theorem 1. For every function w € H>(K) the following interpolation inequalitics
hold:

|'HJ - wa|mig ﬂ Chi-mltlllatx, m = 0, 1, 2, (3.1}
MLyl ic < CAE ™l 1 (5.2
Nk w|m x < Ch}‘"‘lﬂxwh,x, 0<m<3, (3.3)
|w — Ngwln x < Chi-mlwlsix (3.4)

where C s a generic constant independent of w and hx.

Proof. In view of the definition the operator IIg is related to the normal derivatives
of the shape function at the middle points of the sides of K, hence IIx is not an affine
family!®l. However, using the same argument as for nonconforming Morley’s element in {7],
it can be shown that [ is an almost affine family. For this, we introduce a new interpolation
operator . "

Ng:we HS(K) — [lgw € PQ[K),

where P;(K) is the quadratic polynomial space on K, such that

’ Mxw(p;) = wi,

L]

(Dligw - ] = lf D~ el e —l-f Du-#ds,  _ (3.5)
F‘i PPk F" PiPk
i:j:k =1,2,8, 3,k#1s, 3F k,
with i
Dg = (9.9,3y9)", % = pipje.
Evidently, 1) is an affine family and Mgw = w for every w € P;(K). According to the
interpolation theorylﬂ], we have
lw — Mg w|m x < Chk ™lwls.x, m=0,1,2, (3.6)
lw — Mg w1 00,56 < Chic|w|s, k- (3.7)

Both Ngw and i w are quadratic polynomials and, moreover, by the interpolation
conditions, "
Mg w(p;) = Mg w(p) = wi.

Therefore (see [7])

« ol Al a1l il
I'wa — [xw = ( a:lw 3::”) (Pﬂa)'ﬁ’l + ( a:: 3'5”)(?31)%
) (3.8)
ol ATl
+( a:ﬂw a;fu)(mn)%:
where 2 A

¥ = — F A;(I—A.'), 1 =1,2,3.
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It i8 easily seen that '
|%ilm,x < CRE™, m=0,1,2. (3.9)

By the interpolation conditions

I
aaiw(”-""‘) = 'ilr"[(aéz),— i (g":}')k]'

and since 3laIiw is a linear function on p,ps,
3ﬁgw 1 aﬁgw aﬁxw
n, (pix) = E[( In; )j+( ony; )k]’

applying inequality (3.7) gives

(T~ o) = 5| (M) (Ao T |
< Clw — Mg w|; o0 5 < Chi|wls i (3.10)

Substituting (3.9) and (3.10) into (3.8), we obtain
»

Mgw — Mg w|m x < Chy ™lwls gk, m=0,1,2.

Then, the triangular inequality and inequality (3.6) yield

lw—Ngwl, ¥ <lw- ﬁxwlm_g + Mpew — Ngw|m x
< Chi™|wl|s.x, m=0,1,2,

which is inequality (3.1).
Ag regards inequalities (3.2) and (3.3), results of [6] show that coefficients by, bg, by of
It} w satisfy

|6:] < Ch%k |wls x, [b;] < Ch% My ws x = ChA% Mk w3 &,

and
|Nilm,c SChE™, 0<m<3 i=71809,

which imply the validity of (3.2) and (3.3).

From (3.1) and (3.2) inequality (3.4) follows immediately.

Now let V}, be the finite element space on {1 = UK. On each triangle X the shape
function of Vj, is the interpolation operator Il w with w as its associated nodal parameters,
vanishing at vertices on the boundary 80}. We apply Stummel’s generalised patch teat to
establish the convergence property of the finite element space V. Following |9], for a fourth
order problem the generalized patch test consists in verifying that as h — 0, the relations

”,

() Ti(,wn) =) [ duwsmds —0, 1=1,2,
x 9K

aw},,

(i) Tre(hyn) = ) ” ¥

nds —0, r, =12
Ly
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hold for every bounded sequence w;, € Vj, and for all test functions ¢ € C§° () (¥ €
C2° (IR?) in the case of Dirichlet boundary conditions), where n; are the components of the

unit outward normal vector on 8K and z, are the cartesian coordinates of IR?.
Theorem 2. The finite element space Vy, defined above passes the generalized patch test.
Proof. Every function wy € V), may be decomposed into two parts

wy, = Dy + Wy,
where ), is a piecewise quadratic polynomial and w} a piecewise cubic one. Then
ﬂ(¢, wh) — Tl("ob: tI’h) + Tl("lb: w;l)'

By the definition 17, is continuous at the vertices of K, hence the piecewise linear interpo-
lation P,y on {1 is a continuous function, vanishing on the boundary 91l. The remainder

term
Rywy, = ©p — P13y

satiafies

Ty (. wy) = Ti(w, Rythy) = Ry @nmyds.
1(v, 0p) = Ti(v, R19p) ;./‘;K'ﬁ 1Da N

Application of Schwars ipequality and the interpolation theory leads to

[, #Rianms| < ( [, ¥ g LKlRﬂnFﬂ)* < Chill$ll1xcl@nlz.x

Since ), and w) are energy orthogonal on K,

|Wh‘§,x = lﬁ’hlg,ff + |wr|§,ﬂ'

and so
|Bhl2.x < |walz2,x,
therefore
Ti(g,en)| <3| [ wRi@umids| < Chlllli]wlas, (3.11)

© | JaK
where

|wh|2,n = (Z |Wh|§.x) J

K
As for

Ti(v,wl) = wy, n;ds,
(¢, w)) ;M'ﬂ prds

using inequality (3.3), the imbedding theorem and the inverse inequality, we obtain

| Ywynyds| < (/ 1,62d3) 1}( (w;;]ﬂds)*
aK IK K
< Chi*l¥llvk (lwhlox + hrlwhli k) < CRE Ik lwnls x < Chyllllrx lwnla x

and

T3 (¥, wi )l < Ch|l¥||1|wala,n- (3.12}
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Inequalities (3.11) and (3.12) imply satisfaction of condition (i) of the generalized patch
test. - .
To verify condition (ii), we decompose again Tri(¥, ws) into two parts T (v, ) and

3 -
Tri{th, wy). According to the definition of @y, the mean values of —>" et

and —— are con-
tinuous at interelement sides F' and vanish when F c 311. For every function g € L3(F),

on s
let 5
Pfg= —/ gds
T

be the mean value operator of ¢ on F, and the remainder term Rfg=g- Pfg. Then

Trl('ﬁ:wh)=z Z /;'nbzt::l“lda

K FC8K

-2 3 [vr(G)mis =3 T [ Ry (22 mas.

K FCOK K FCOK

The interpolation theory gives

F{OW 2, \1 W\ \ %
[, RO (o2 )| < ( [ (REwras)* ([ (mF (522)) as)?

< ChglY|ix|Onla,x < Ch ¥k |wnl2 x

and
1 Tt(, Bn)| < Chl|s|wnlan. (3.13)

Further, a partial integration yields
dwl 34w dy dw!
T. by § : h - Z o z f B o, |
(¢, wy, ) 2 Jox Y B, n;ds 4 ./;f ¢az,.3:=;da M4 e, O do (3 14)

In view of the energy orthogonality of @ and w; on K we have

where

Rop=$~Pop,  Rop=1 [ ydo

By virtue of the interpolation theory and inequality (3.3} it follows that

[ tmmte] < ([ (rovr) ([ (Zh)ar)

< |Rolo,x whlo,x < Chi )k |wnla x,

and

W
IZ/ 'ﬁ-axra’;‘ d*" S Chlgli|walz . (3.15)
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Applyirg irequality (3.3) and the inverse inequality to the second term on the right gide of
(3.14) gives

a¢ dw,
i i P8t B K K

which together with (3.14) and (3.15) show

[ Tet(, wh)| < Chl$|1|wnz,a- (3.16)
Combining {3.13) and (3.16}, we obtain
|Trl('ﬁrwh]l < Chliﬁlllwh'é,h, r,i=12, (3‘17)

which implies condition (ii) of the generalized patch test.

According to Stummel’s theory 191 success in the generalived patch test together with
the approximability condition via Theorem 1 ensures the convergence of the finite element
space Vj, for general fourth order elliptic problems.

§4. Error Estimates

Consider the plate Bending problem with the clamped boundary conditions

A'wu=.]f in 11,
{ u = z: =0 on BQ. 4-1)
The weak form of the problem (4.1) is to find u € H5 () such that
a(u,v) = (f,v) Vve Hi(fl), (4.2)

where
au,v) = f [AuAv + (1 — 0) (2uzyVzy — YzzVyy — UyyVzz)|do,
Gy

(1,9) = [ fodo

For simplicity we assume that the domain {3 is a polygon. Divide {1 into a regular family
of triangular elements K satisfying the inverse assumption. Taking V), as the finite element
space on {1, we congider the finite element approximation of the problem (4.2): to find
up € V), such that

ap(un, vn) = (f, P19,) Yo, €V, (4.3)

where

an(u,v) = Z[ [Aulv + (1 — 0)(2UzyVsy — Uzzlyy — YyyVzz)]do.
el |

Theorem 3. Let u € H3(Q) N HZ(Q) and up € Vj, be the solution of (4.3) and (4.3),
respectively. Then

|u — uhlg‘h < Chlula, (4,4)

lu — up|in < Ch%(|u|s + | flo), f O is conves, (4.5)
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where

M—ZI .-

Proof. According to the Strang lemma,

En(u, wy)]
u — Up |2, 50( inf |u-—uvylen+ su | En (u, ), 4.6
| h|2 2 A EV, | |2 w;.elff,. Iwhlﬂ,h ( )

where the consistency error functional
En(u, wn) = an(u, wn) — (f, P1i2s).

‘The first term on the right side of (4.6) is simply estimated by Theorem 1:

H:Iel{rh 4 — vplap < (; | — IIHHE‘K) < Chluls. (4.7)

The estimate of the second term, 1.e. the consistency error estimate, rests on a careful
calculation of Ej,(u,ws). By Green’s formula,

_' 32y Bwh 3%y E!w;.,
- ;:/;x [ﬁ.u i) da? Bn ) Z fff dnds 33

. [K V- il s By lae T b 50 T BT, ), (4.8)

80 that
En(u,wn) = E1(u, wp) + Fa(u, wn) + Es{u, wy), (4.9)

where
] u J wh

Ei(u,wp) = Z[gx[&u— [1—*5] 333

E3(u, ws) = (1~ 0) Z/ an;a 33"‘:‘

Es{u, wp) = Es{u,ws) — (f, Pi®n).

Since the piecewise linear interpolation P;w) is continuous in {1 and vanishes on 33, then
Pyw, € H3(1l). In view of the assumption u € H3(11), A%y € H~1{f1). Therefore, the
scalar product (A%u, P;5),) makes sense and Green’s formula yields

(f: Plﬁ"h) - (52“: Plﬁh) = —“/ VAu - VP, do,
0

and so

Ea(u, wh) = E/ VAu- ‘U’[Pl W — wh)da'. (4. 10]
o o D
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Using the interpolation theory and inequality (3.3), we find

Bs(w,on)l < | [ VAu-V(Pdn - wn)do] < |Aul|Pran — wnlun
K K

< |Au|y([Pron — @Drln + lwh|1,n) < Chlu|a([@alan + [wnlan)

< Chlulsfun s (a.11
On the other hand, setti —A—l—& dqb—82u tively, into i alit
n the other hand, setting ¥ = Au—{ a)aaﬂau 55, Tespectively, into inequality
(3.17) gives
IE{(H, w,-.]] < Chlﬂlg'tﬂhlgih, ¢ =1 2. [4.12)
Combining (4.11) and (4.12) we conclude that
|En(u, ws)| < Chiulajwylz s, (4.13)

which together with (4.8) and {4.7) proves inequality (4.4).

Now we are going to prove inequality {4.5). Let II;, be the piecewise cubic interpolation
operator on {1, whose restrictions to each triangle K are Ilx, defined by (2.9} and (2.10).
By virtue of the decompposition of Il into NIx and IT}, the operator II;, may also be
decomposed correspondingly into

II, = ]'Ih + HL.

Let us set ¢ = u — up,, Then Pi[lse € H} 1) and g = — AP, [l € H1{f1). Consider the
auxiliary variational problem : to find p € H3(f1) such that

alp,v) = (9,v) Vv € HE(Q). (4.14)

According to a regularity theory of solutions, when {1 is a convex pnlygnil, the following a
priors estimate holds:

lells < Cligll-1-

By the definition,

g, v
loflx = sup 8% (4.15)
sexl(n) lvfl2
vl 0
For every function v € H}{fl) Green’s formula gives

(g: ”) = _(ﬁplnhﬁs 'U) = [ ?Plﬂhc - Vudo,
[}

8o that

I(g, U)I 5 |P1H;,a|1|u|1, (g, P1ﬂhc) = /; VPlﬂhc # vP]_HthJ e |P1H;,¢|f,

and

lells < Cllgll-1 € C|Pillxel;. {4.16)
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On the other hand,
1P e = (g, P Mlne) = (Adp, Pille) = — /n VAyp - VPljedo
= Z/ ?ﬁp . ?(ﬂ;.e i Plﬂhc)dnr - Z[ ?ﬁp : ?H;,edcr: I + Iz. (4.17]
x 'K K 'K
The first term J; on the right side of (4.17) is bounded from above:

L] € ‘Efx ?ﬁp-?(ﬂhc—f-’lﬂhe)da} < Z |Ap|y x{line—PiDlselyxc < Chlols|lnelaa.
K K

Application of inequalities (3.1} and (4.4) gives

lnhﬂln,h < Inh“ = “l:‘.‘l,h + IH o tlh|2,h + |Hh e nh“h |2.h < C'h(|u|3 + |“h|3,h):

but
unlsa < |u—Taulss + [Tau — unfsn + |uls < Cluls + C Y  hx'|lau — uplsx
K
< Cluls 3 € ) _ hx' (Il — ulz.x + |u — uplz x) < Cluls. (4.18)
, = -
Therefore
|Hh£|g‘h < Chltila, [4.19)
and so
|11| < Chlpl|s|uls. (4.20)
In view of (4.8) the second term I; on the right side of (4.17) has the form
I; = Ba(p,NIne) = an(p, Mne) — Er(p, Nne) — Ea(p, TIpe). (4.21)

Using (4.12) and (4.19), we have immediately
|E; (w0, lIpe)| < Chlp|s|Nne|an < Chpls|uls, §=1,2. (4.22)
The first term on the right side of (4.21) may be written as
an(w, Nine) = ap(pw,NMine — €) + an(o — Mpw,€) + an(llnp, ) = J1 + J3 + Js.
By (4.8) |
J1 = an(p, Ine — ¢) = E1(p,lIpe — ¢) + Ez(p, Nlne — ¢) + Es(p, Ine — ¢).
Application of (4.12) and (4.18) yields

|E; (0, MIne — €)| < Chlpls|lne — ela,n < Ch3|pjslels,n < Ch?|pls|uls,

Es(p,Mhe—e)| < Y| [K VA - V(llxe - )do| < CH?lpls]uls
K
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Therefore
|J1] € Ch3|p|s|uls.
Further, '
| |J2| = lan{e — i, e)| < Cle — Hh‘P|2,h|-"—|ﬂ,h < Ghﬁkﬂle. |ula.
The last term

Js = an (a0, €) = anfu, Ihp) — an(un, Iap) = Ex(y, lnep)
= By (4, Inp — w) + Ez(u, Hap — o) + Es{u, Hnep),
where the property E;(u, ) = 0,% = 1,2, is used. By (4.12)

|Ei(u, TIae — »)| < Chluls|Ilap — ©lz,n < Chz|u|3|fp|3-

It is easily verified that
[flfp_ P1p]+z:'/;{?ﬁu‘?(qo—1’1@)da=0,
K

hence

Es(u,IInp) = (f, ¢ ;- Pay)

+ 3 [ VA V(o - Tnp - Pilp ~Tp)do - 3 [ Vau- VA pdo
K K

Since

{f, e — Pie)| < |flole — Prelo £ CR3|flolela,

‘Z[ VAu-V(p — Iz~ Prp - Hhiﬂ))dﬂf‘ < Chluls|e — Mapla,n < Ch?|ulslels,
x 'K

|3 [ Vau VAdo] < APl
x K

< Cluls(|Ty e — Pill |10 + T el1,n) < Ch?luls|els,
it follows that
|Es(u, Iap)| < CH*([uls + |flo)llells, [Js| < Ch*(luls + | flo}liells.
Combining all inequalities for J;,1 = 1, 2,3, we have
lan (0, Tae)| < CH*(Juls + |flo)llls,
which together with (4.22) gives

2] < Ch*(Juls + [£lo}llells- - {424)
Substituting (4.20) and (4.24) into (4.17) and using inequality (4.18}, we obtain

[Py TIneli < ChA*(|ufs + |flo)-
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Finally, the triangular inequality and (4.18), (4.19) imply
lels,n < Je ~ Mpe|y n + [Mye — P, Mpelsn + [Py lne|g n

< Chijels,n + Ch|llnels n + Ch%(Juls + | flo) < CA3(Juls + |£f]o)-

Inequality (4.5) is thus proved.

Remark. In the finite element equation (4.3) the right side {f, P,v)) iz used instead
of the standard form (f,vs). This kind of modification appeared in [10] for an analysis of
Morley’s element. If we consider the usual finite element equation

uh[uh, "h-] = (f, ”h] Vo eV, {4.3')

the following theorem can be proved. |
Theorem 3'. Let u € H*(2) N HZ(Q) and up € V;, be the solution of {4.2) and (4.3'),
respectively. Then

|4~ tnlz,n < Ch([uls + h|flo),

Ju — unlin < Ch3(|u|s + A|fls), if O is convex.
§5. Applications

We apply this new gnergy-orthogonal element, denoted by the SZ element in Tables 1-

4, to sample plate ‘bending problems. Let us consider a square plate with the side length
' 3
= 1, Poisson’s ratio 0 = 0,3, the bending stiffness D = T [ft 27) = 1 and with two
loading cases, namely a unit uniform distributed loading and a unit vertical loading. The
boundary of the square plate is assumed to be either simply supported or clamped. Because
of symmetry a quarter of the square plate is calculated using two mesh patterns (Fig. 1).
The results are compared to those of Bergan’s energy-orthogonal element. In Tables 14
the deflections and the moments are normalised by a factor 10 and 10° respectively. The

percentage in brackets after each figure indicates the relative error to the true solution.

y Mesh I (4 x 4) y Mesh II {4 x 4)

Fig 1.. A quarter of the square plate
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Table 1. Clamped square plate. Mesh I

e

_ size SZ 1 B'»frga.n thé?ry
Deflection w(0,0) | 4x4 | 1.305 3.16%) | 1.325 (4.74%

(Distrib. load) 8x8 | 1.276(0.87% 1.280 (1.19% 1.265
Deflection w(0, 0) | 4 x4 | 5.502 (1.967%) BTR '_“'
(Concent. Joad) [8x8] 5.590 (0.3% 5.604 (1.46%% 5.612
Moment M.(0,0 2.355 (2.89%) | 2.540 (10.9%

(Distrib. load) 8x8 | 2.300(0.44% 2.353 (2.72% 2.290
Moment M, (3,0) | 4x 4 | -5.219 (1.67% ) | -5.633 (10.32% ]
(Distrib. load 8x8 | -5.187 (1.05%) | -5.445 (6.07%) | -5.133

Moment M,(3,0) | 4 x 4 | -12.855 2 219%) | -13.556 {7.78'% __
(Concent load) 8x8 | -12.712 (1.07%) | -13.146 (4.53%) | -12.577

Table 2. Clamped square plate. Mesh II

’ sise r

Deflection w(0, 0) | 4 x 4
(Distrib. load 8 x 8

Deflection w{0, 0) | 4 x 4
(Concent. load) [ 8x8 |

~ 5.695 (1.49 5.612
2.525 (10.25

Moment M,(0,0) | 4 x 4
2.352 (2.69%) | 2.290

(Distrib. load) 8 x8 2.326 {1.57

" I

Moment Mo (3,0) | 4x4 | -3.846 (25.07 -3.838 (25.23
(Distrib. load 8x8 | -4.416 (13.9 -4.423113.33 -5.133
Moment M, (%,0) | 4 x 4 | -10.607 (15.66%) | -10.387 17.41
((_Zluncent }na.dﬁ 8 x8 F -11.401 {9.35/ -l_lu.'iﬁﬂﬁ 9.717 -12.577

Table 3. Simply supported square plate. Mesh I

Bergan theory

‘ size
"Deflection w(0, 0) | 4 X 4 4.126 (1.58%
(Distrib. load) 8 x 8 4,079 {0.41

Deflection w(0, 0) | 4 x 4 | 11.741 (1.12%
(Concent. load) | 8x 8
Moment M,,(0,0) | 4 x4

(Distrib. load) 8x8

Moment M,,(1,1) [ 4Xx 4 : . : .

(Distrib. load) 8x 8 | 3. : : ; 3.248
Moment M,,(1,1) | 4 4* :

(Concent load)  [B8x8 6.095
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Table 4. Simply supported square plate. Mesh II.

size SZ Bergan theory
Deflection w(0, 0) |4 x4 [ 4.116 (1.33%) | 4.128 (1.61%)
(Distrib. load) §x 8| 4.075 (0.32% 4.081 (0.46%) | 4.062
Deflection w(D, 0) | 4 x 4 | 11.553 (0.41%) | 11.881 (2.41
(Concent. load) [ x 8 | 11.598 (0.03%) | 11.692 (0.79%) | 11.601
Moment M,,(0,0) | 4x 4 | 4.945 (3.26%) | 5.034 (5.12%) |

(Distrib. load) 8x8 | 4828 (0.81%) | 4.854 (1.37%) | 4.789
Moment M., (1,1) [4x 4 | 3.544 (9.11
(Distrib. load) 8x8 | 3.351(3.17
Moment M.,(1,1) [ 4x 4 | 6.450 (5.82%)
(Concent load) 8 x8 | 6.183 (1.44%) | 6.180 (1.39%) | 6.095

Conclusjons. 1. It is evident from Tables 1-4 that the SZ element gives better results

than those of Bergan’s.
2. Both Mesh I and II are convergent and Mesh I is preferable.
3. The SZ element seems to be a good nine parameter plate element with clear formations

and satisfactory numerical accuracy.

™

#
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