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Abstract

A class of k-block implicit hybrid methods for solving the initial value problem for
ordinary differential equations are studied, which take a block of k new values at each
step. These methods are examined for the property of A-stability. It ie ehown that the

method of order 2k + 2 exists uniquely, and these methods are A-stable for block sizes
k=1,2,...,5.

§1. Introduction

We shall study a class of methods for solving numerically the initial value problem for

ordinary differential equations. These methods are named k-block implicit hybrid one-step
methods, and take k new values at each step.

Block methods have been studied by a number of authors, such as Rosser, Shampine and
Watts, Bichart and Picel, and Zhou Bing. Shampine and Watts[6], [7] did further research
on theori 8 of block methods. They presented a different approach based on interpolatory
formulas of Newton-Cotes type; the methods are of order k + 1 for k odd and k + 2 for k
even. They also showed that the methods are A-stable for sizes k = 1,2,... 8.

The fatal w.efect of block methods is inversion of a km x km matrix during Newton

iterations, where m is the number of differential equations. So the use of higher order block
methods is limited. To avoid the defect, we present a class of block implicit hybrid one-step

methods, which are combinations of hybrid methods with block methods. These methods
with small k£ possess higher accuracy and good stability. It is shown that the method of
order 2k + 2 exists uniquely, and these methods are A-stable for block sizes k = Yo v,

§2. A General Formulation and Convergence

Consider the initial value problem

¥ = flz,y), yla)=n a<z2<4 (2.1)

Let Znyi = 2o +1h,Tpyy, = Zp + vih, where n = mk,m = 0,1,2,...,1 = 1,2,...,k, and
v & 2,4 =1,2,...,kv; <vy <...<uv. Lety; be the approximation of y(z;). Then the
formulas are in the form

{ Ym = ynK® + RBF(Y,) + hfnb + ADF (Y 4o),

2.2
Yiie = —A.Y,, —y.a. + hB,F(Y,.) + hf,b., =

where f; = f(z;,y;1,k° = (1,...,1)7,B, D, A., B. € R*** b a,.b, € R**! D is nonsin-

gular, ¥, = (yn-i-l:“ -:yn+k)T:Ym+u == (yn+u1: ---:yﬂ+ﬂg]T1F(Ym) = (fn+1: r -:fn+k)T:
F(Ym+u) = (fﬂ+u11 i ':fn+llj=)?'1'

* Received May 27, 1987.
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Equation (2.2) is a system of nonlinear equations for Y,. and can be written as
Yo = y KO + hBF(Yn) + hfub+ hDF(—AYm = YnGe + hB.F(Ym) + hfnb.) = G(¥in);

thus

G (Yon) = h|BF'(Yin) + DF'(Yiniu) (A LB, F'(Ym))-

if h is suitably small, we have ||G'(Y,,)]} < 1. Then (2.2) has a unique solution. In practice,
we may have to presume the existence of a solution.
With the method (2.2), we define two linear difference operator vectors L and L* by

L{¥in(2); h] = Yin(2) — y(2) K® — hBYs(z) — hy'(2)b — hDYyo(z),  (2:3)

L7 [Yin(2); B = Yimto(2) + AuYim(2) + y(z)a. — BB.Yn(2) — hy'(z)bs, (2.4)

where Y4 (z) = () (z + h), - il (z + kh))T,Y,Eﬂ_“(m) = (y'z + vih), -,y (z +
veh))T,1 =0, 1. Expanding y(z +1th), y(z + v;h) and thelr derivatives as Taylor series about
z and collecting terms in (2.3) and (2.4) give

LY (z); h] = y(z)eo + Ry (z)er + -+ hPyP)(z)ep + ..., (2.5)
ﬂ*[l{n(m); h| = y(x)ey + hy'{z)e] + ...+ RIyte) () + ..., (2.6)

where ¢, and c are constant vectors, Comparing {2.3) and (2.4) with (2.5) and (2.6), we
have

cg = 0,

¢, = K~ BK®—b— D", (2.7)
¢, = K?/pl — BK?~Y/(p— 1)1 = Dv*~}/(p— 1), p=2,3,...,

¢y = v + A K°® + a.,

¢t =v+ A K — B. K"~ b., (2.8)
cg = vi/gl + A K/q! - B. K Yf{g—1), ¢=2,3,...,

where K* = (1°,2°,...,k°)7 and v* = (v},v3,... ,v¢)T. For formula (2.2}, a convergence
theorem can be easily obtained.

Theorem 1. Suppose the method ts defined by (2.2), and the linear difference operator
vectors £ and L* satisfy | L|| = O(APtY) and ||£*) = O(h?*'). Then the method 15 conver-
gent with global error of order h" where r = min(p,q -+ 1), and the method 1s satd to be of
order r.

In order to obtain a high crder method, we choose B, D, A, B,, b, v, a., b., as follows:

b= K — BK® — Dv°, (2.9a)

KP/p! — BK* ' /{p—1)! - Do Y {p—1)'=0, p=2,8,...,2k+2; (2.9b)
{ a. = —uv° — A K",

b i AR — BLRY )

v /g + A K/q! — B.K9 ' [{g—1)1=0, ¢=23,...,2k+1. (2.10b)
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Then we have

Theorem 2. The method (2.2) of order 2k + 2 ezists uniquely.

Proof. It 18 sufficient to prove that solutions of (2.9b) and {2.10b) exist uniquely. Since
equations (2.9b) and (2.10b} are nonlinear, there are some troubles. However, if we can
determine v such that v; ¥ 7,1 = 1,2,...,k,5 = 0,1,... ,k, and v; < v; when 1 < j (the
determination of v will be given in §3), then substituting v into the first 2k equations of
(2.9b) we obtain a system of equations whose coefficient matrix is a Vandermonde matrix.
Hence B, D) are determined uniquely. Substituting v into (2.10b) gives

I F2k+1
(A, —B.) ( 2K 3K? ... (2k+ 1)K ) == (0 WP, | WEFRLY, (2.11)
liet K2 K3 ... K2k+1
X = ( oK 3KZ {2k + 1) K2* ) and z = (21,...,22)
- If Xz =0, then
o A 21 K% + 2, K3 + ... 4 200 K2*%1 = 0,
{ 231K+332K2+...+[2k+ 1)z K2% = 0. (232
Let h{z) be ;L-p_ofynnmia,l
. h(z) = z12° + 222% + ... + z0p 2% 1, (2.13)

Then, from (2.12) we have A(5) = k'(j) = 0,5 = 0,1,...,k. Thus the polynomial k(z) has
at least 2k + 2 zeros, and 80 2; = 22 = ... = z3; = 0. Hence X is nonsingular, and A,, B,
are determined uniquely.

§3. Numerical Stability

When formula (2.2} is applied to the test equation ¥’ = Ay, Re A < 0, it is of the form

(I = kB + kDA, — K*DB.)Y,, = yn(K° + kb — hDa. + k2Db.) (3.1)
where A = Ah. Let

z(R) = (I - hB + hDA. — k?DB.)" (K® + kb — kDa. + A2Db.), (3.2)
where z{h) = (£,(h),..., & (h))T. Then we have

{ Un4k = Ek(}-")yn = [fk(i)]mﬂym (3.3}

Unti = E(R)yn = & (R) [ (A)™ g0, 7 # k.

- Definition. The block implicit hybrid method (2.2) 1s said to be absolutely stable for h
if |€x(h)| < 1. The region of absolute stability is defined as the set § = {h | |&(R)| < 1}.
The method (2.2) 1s sasd to be A-stable if C~ C §.

In order to obtain the explicit expression of z(k), using Cramer’s rule, we can rewrite z

a8
2k

a(B) =Y 5k [ Y rik, ro=1, (3.4)

1 =0 t=0
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2k
where p; = (p{”,...,p*)T. Multiplying by » r:#*(I — AB + RDA. — k>DB.) on both
1=0 |
sides of (3.2) from left, and comparing coefficients in k', we obtain

po =roK°, (3.5a)
p1 + (DA. — B)po = r1 K® + ro(b — Da.), (3.5b)
pit1+(DA.—B)pi—DB.pi_1 = rig1 KO +ri{b—Da.)+ri-1Dbsyr = 1,2, .. ., 2k—1, (3.5¢)
(DA. — B)pox — DB.pak-1 = rox(b — Da.) + rog—1 Db, (3.5d)
DB, poi = —rop Db,. (3.5¢)

Eliminating v from (2.9) and (2.10}, we have
K + (DA. — B)K® + Da, ~ b =0, (3.6a)
K2/2! + (DA. - B)K - DB.K® — Db, =0, (3.6b)

K?*?/(p+ 2)! + (DA, — B)K?*'/(p+1)! — DB.K*[p! = 0, p=71,2:: .2k [3.8¢)

Then we can determing p;,r; from (3.5) and (3.6).
Lemma 1. If the method (2.2) is defined by {2.9) and (2.10), then

t

() p=) ri- K*/s!, 1=0,1,...,2k, (3.7)
(i) ri= (2k—i+1)(2k—i+2)p*(0)/(2k+2), i=0,1,...,2K, (3.8)
where -
o(z) = [(z—1)(z—2)... (= - K)}. (3.9)

Proof. Since ro = 1, then py = K°. From (3.5b) and (3.6a), we have
py = — (DAL — B)KU +b—Da. A+ K=K+ raK°.

Suppose (3.7) is true for ¢ < 2k — 1. Then for + + 1 we have

1 1—1
pi+1 = —(DA. — B) Z ri-K*/s!+ DB, Zr,-_,_lK’/s! + r;i1Dbe + ri{b— Da.) + rir1 K°
=0 =0

= rid{—(DA. — B)K® + b — Da.] + ri—y|-(DA. — B)K + DB.K° + Db,]

1—1
+ 3 rimemi[-(DA. = BY)K**!/(s + 1)+ DB.K* /s + retn K7

a=—1
i—1 t+1
= r; K + ri_.lK?;'Z! + Zﬁ'_,_lK!'l-gf(H + 2)' + r,-,+1K“ = Zri+1—uKEK5!
s=1 a=0

Thus (3.7) holds for 1 < 2k. From (3.5d) we have

2k 2k—1
(DA* = B) Z rgk*,K’f&t! — DB.. Z TZk_l_,K'/.ﬂ! = rgk(b — Dﬂ;*] -+ rgk_1Db.,.

a=0 a=0{
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That 1=
rox| —(DA. ~ B)K° +b— Da.|+ rox—1|—(D A« — B)K + DB.K° + Db, ]

+ mf rok_1-s|—(DA, — B)K**1/(s + 1)1 + DB, K" ol

a=1

2k—-1
= rop K + roe— 1 K220+ > raea- KT /(s +2)1 =0

s=1
Then we have
ok
Z r‘gk“,K"*-l/(ﬂ + 1)! = 0. (3.10)

s=0

From (3.5¢) we can have

2k 2k
S rax— K*+2)(s +2)! + (DA = B) Y rae_ K*HH /(s + 1)1 = 0.

8=0 1==0

Then from (3.10) we have
2%k

’ Y ra- K*?/(s + 2)I = 0. (3.11)
=0

Let
2k
9(z) = D roe_,z'*?/(s +2)! (3.12)

2=0
From (3.10) and (3.11) we have g(7)} = ¢’(7) = 0,7 =0,1, ..., k; hence

2k
g(z)/2% = ) rai-.z" /(s + 2)! = o(2) /(2K + 2)!

=0

and so
rak—s = (8 + 2)10() (0)/(2k + 2)!s! = (s + 1) (s + 2)'*) (0) /(2K + 2)!

Let + = 2k — s. Then (3.8) holds.

In fact, we can also determine v uniquely. From (3.5¢) and (2.10} we have

2k
roxD(v + A K) +DB. ) rax_,K*/s! = rpcD(v + A.K)

a=1]

+D EZ rok—o v/ (s + 1)1+ ALK /(s + 1)]

a==]

2k 2k
= [ ngk_,u'+1/(a + 1)1+ DA, ngk_,ff""lf(s + 1)1 = 0.

a=0 »=0

By using (3.10), we have
2k

ngk_,u”l/(s + 1) = O; (3.13)
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Hence v;(7 = 1,2,...,k) are k zeros of [p(z)z?] =2z(z—1) .- (z—k)[z(z - 1) - - {z— k)];
then v;(5 = 1,2,...,k) are k geros of [z{z — 1)---(z — k)J'. It can be easily seen that
vieft—-1,2),s =1,2,...,k, so Theorem 2 holds.

In order to consider the numerical stability, we write (k) as

2k 2k
Ex(R) =Y MK / S " r:h* = P(R)/R(R). (3.14)
i=0 i=0 -
Then we have Lemma 2.
Lemma 2. | |
pM = (-1f'r, i=0,1,...,2k (3.15)

Proof. From (3.7) we have

:

p}k] = z ri_,k’/al

by (3.8), _

) = ) (2% —j+ s+ 1)(2k — 1 + 5 +2)p PN (0)k* /(2K + 2)!s!

a=0 -
(2k—-1+4) (O)ku
(2k + 2)!s!

= i[(zk—w 1)(2k — 4+ 2) +2(2k — ¢ + 2)s + s(s — 1))£
=0

= [(2k — 1 + 1)(2k — i + 2)Z*~9 (k) + 2(2k — £ + 2)kp(2F—¥+1) (k)
+k2p(ZR—i+2) (V] /(2K + 2)!

Take 2k — 1 + 2 derivatives on both sides of the equality (z — k)?p(k — z) = (z)2z?* and put
z = 0. Then we have

(2k — £ + 1)(2k — £ + 2)(®* %) (k) + 2(2k — ¢ + 2) k(234 (k) + k2 lZ—+2) (k)

= (=1)*(2k — i + 1}{2k — ¢ + 2)p{Z*—*}(0).
(3.16)

By use of (3.16), p!*) becomes

p® = (=1)(2k — i + 1)(2k — i + 2)0'2*=9(0) /(2k + 2)! = (=1)'ri,i = 0,1,...,2k.

Hence B(h) = P(—R). Then we have

Theorem 8. If the zeros of the polynomsal P(h) are all sn the left-plane C™, then the
block smplicst hybrid method (2.2) s A-stable.

Proof. Since the zeros of P(R) are all in C~, P(—A) has no zero in C~; hence i (h) is
analytic in C~. From {&(ty)] = 1,y € (—o0,00),3 = /—1, and |§x(h)| — 1 as |h| — oo,
by using the maximum modulus principle, we have |€x(h)| < 1, h € C~. This completes the
proof.

Lemma 8. Let z,[:], 1 <1< 2k, be the zeros of the polynomial P(z}. Then

Rezl) <0, 1<i<2kk=12,...,5 (3.17)
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Proof. Decompose P(z) into two polynomials E(z) and F(z), which contain respectively
only the even and odd terms of P(z). Then, with g{z) = E(2)/F(z), it follows that

P(z)/F(z} = g(z) + 1.

We expand the function g(2) into fractibns:

1
g(z) = apz + 7

a1 & S i
22

1
+.._
qs 2
By calculation, we have a; > 0 for £ = 1,2,...,5. Since the coefficients of the fraction are
positive real numbers, if Rez > 0, we have Reg(z) > 0. Thus Re[P(z)/F(z)] 2 1; hence
P(z) # 0.
Theorem 4. Block implicit hybrid methods (2.2) defined by (2.9) and (2.10) are A-stable
for block sizes k= 1,2,...,9.
The.coefficient matrices and vectors are displayed in Table 1 for & < 3.

@
Table 1
K b Ga b* L1} B
i I l I —1 1
6 2 2 G
31 R 3+ /3 3= +/3 4 1
2| 240 18 54 3 15 240
2 -5+ 2./3 3-.3 3+ .3 8 2
15 18 | B4 q 15 15
106 27 + 105 L N 3 — /6 151 11 1
045 108 24 72 2 420 420 045
.| 107 13 3 3 58 23 2
045 512 512 2 106 105 945
4 —27 4+ 10/5 1 /5 3+ 5 81 81 4
35 108 24 72 " 140 140 35
k .D A-; Bl‘i
2 T )|
1 £ ke i
3 2
a+3ﬁ 3 3/3 4 _5—2v3 43 -3+ V3
2| 10 16 10 16 9 18 27 54
3 3 A 5 + 23 43 -3-/3
— = —f—
5 5 S 18 31 54
L 2.5 16 41 25 1 1 27+ 106 | —1—-5 1-6 —-3++5
140 ' 15 180 140 15 4 4 108 8 8 72
.| 2. 28 512 2 25 243 243 13 81 _ 81 3
vt 15 045 T 512 512 512 512 512 512
81 16 81 _1 1 _97-108 | -1+VE 1+4/5 -3~ +/5
140 35 140 4 4 108 8 8 72
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§4. Numerical Examples

When we. apply the Newton iteration to solve the nonlinear equations (2.2), the following
matrix needs inversing during the iteration:

- OF (Ym) OF (Ym+v) BF(Yn)
where
aF (Y. ; OF(Yts :
ai.rm ) — dlag(Jn-i-l: i aEn g Jn.+k): ,(aYm+ ) . dmg(Jn.,.t,l, S Jn+u;,,): (42)
and -
Ji — a—y(:ri,yi). (4.3)

When (2.1) is a system containing m differential equations, then @ is a matrix of order km;
if k is large, much work should be done on inversing @. Therefore, for practical use, we let
k = 2. Then the order of the méthod is 6. In the following, we only discuss the case k = 2.
For convenience, we assume that m = 1, which can easily be generalized to m. When the
Newton iteration is cgnvergent, the matrix Q can be replaced by an approximation. In fact,
we may use -

J = diag(Jpn+1, In+1) (4.4)
to approximate ng};‘"‘] and Eg.’;—*—'l. Then we have
Q=I—h(B—- DA.)J -~ h*DB.J>. (4.5)

Let k = 2, h = 0.1. Some numerical results are given in Table 2; the number of iterations is
two or three.

Ezample 1. ¥ = 1/(1 + 2)? — 2y*,y(0) = 0.

Ezample 2. y' = ¥(1 - £),y(0) = 1.

Ezample 3. y' = 1000z> — 1000y + 322, y(0) = 0.

Table 2
Example 1 Example 2 Example 3
Lii Un eIrrTor Yn error Yn error
[ 0.5 4 2.32F-08 | 1.125655 | 3.78E-08 | .125 | 3.12E-10

1.0 5 2.86E-00 | 1.266046 | 3.04E-08 1 1.27E-08
'1.5 | .4615385 | 1.01E-08 | 1.422627 | 5.01E-08 | 3.375002 | 4.62E-09
2.0 4 1.73E-11 | 1.596923 | 1.97E-08 | 8.000003 | 2.14E-07
2.5 | .3448276 | 2.23E-08 | 1.790516 | 8.76E-08 | 15.625 | 4.05E-08
3.0 3 3 40E-08 | 2.00502 | 1.64E-08 | 26.99998 | 7.78E-07

y' = 998y + 19982,

z' = —999y — 1999z, y(0) = 1, 2(0) = 0.
This is a system of stiff equations. The eigenvalues are —1 and —1000, and the solution

{ y = YT _ e—lﬂﬁﬂtj

Ezample 4.

18

E-I + E-lﬂﬂﬂ.‘l

g = -
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Let k = 2,h = 0.01. The prescribed tolerance for iterations is ¢ = 10~%. “ Max error”
denotes max{|y; — y(z;)|, |z; — 2(z;)|}. Then numerical results are given in Table 3.

Table 3
z Y z Max error
0.1 | 1.809528 | —.9046904 | 1.47E-04
0.2 1637466 | —.8187357 | 4.99E-06
0.3 | 1.481635 | —.7408174 | 1.48E-06
0.4 1 1.340636 | —.6703158 ' 4.53E-06
| 0.5 _ 1.213059 | —.6065297 | 2.07E-06

The author wishes to thank Professors Kuang Jiao-xun and Wang Guo-rong for their
valuable suggestions.
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