BLOCK IMPLICIT HYBRID ONE-STEP METHODS*

Miao Jian-ming (Shanghai Normal University, Shanghai, China)

Abstract

A class of k-block implicit hybrid methods for solving the initial value problem for ordinary differential equations are studied, which take a block of k new values at each step. These methods are examined for the property of A-stability. It is shown that the method of order 2k + 2 exists uniquely, and these methods are A-stable for block sizes k = 1, 2, ..., 5.

§1. Introduction

We shall study a class of methods for solving numerically the initial value problem for ordinary differential equations. These methods are named k-block implicit hybrid one-step methods, and take k new values at each step.

Block methods have been studied by a number of authors, such as Rosser, Shampine and Watts, Bichart and Picel, and Zhou Bing. Shampine and Watts[6], [7] did further research on theori s of block methods. They presented a different approach based on interpolatory formulas of Newton-Cotes type; the methods are of order k + 1 for k odd and k + 2 for k even. They also showed that the methods are A-stable for sizes $k = 1, 2, \ldots, 8$.

The fatal defect of block methods is inversion of a $km \times km$ matrix during Newton iterations, where m is the number of differential equations. So the use of higher order block methods is limited. To avoid the defect, we present a class of block implicit hybrid one-step methods, which are combinations of hybrid methods with block methods. These methods with small k possess higher accuracy and good stability. It is shown that the method of order 2k + 2 exists uniquely, and these methods are $k = 1, 2, \ldots, 5$.

§2. A General Formulation and Convergence

Consider the initial value problem

$$y' = f(x, y), \quad y(\alpha) = \eta, \quad \alpha \le x \le \beta.$$
 (2.1)

Let $x_{n+i} = x_n + ih$, $x_{n+v_i} = x_n + v_ih$, where n = mk, m = 0, 1, 2, ..., i = 1, 2, ..., k, and $v_i \notin Z$, i = 1, 2, ..., k, $v_1 < v_2 < ... < v_k$. Let y_j be the approximation of $y(x_j)$. Then the formulas are in the form

$$\begin{cases}
Y_m = y_n K^0 + hBF(Y_m) + hf_n b + hDF(Y_{m+v}), \\
Y_{m+v} = -A_* Y_m - y_n a_* + hB_* F(Y_m) + hf_n b_*,
\end{cases} (2.2)$$

where $f_j = f(x_j, y_j), k^0 = (1, ..., 1)^T, B, D, A_*, B_* \in \mathbb{R}^{k \times k}, b, a_*, b_* \in \mathbb{R}^{k \times 1}, D$ is nonsingular, $Y_m = (y_{n+1}, ..., y_{n+k})^T, Y_{m+v} = (y_{n+v_1}, ..., y_{n+v_k})^T, F(Y_m) = (f_{n+1}, ..., f_{n+k})^T, F(Y_{m+v}) = (f_{n+v_1}, ..., f_{n+v_k})^T.$

^{*} Received May 27, 1987.

Equation (2.2) is a system of nonlinear equations for Y_m and can be written as

$$Y_m = y_n K^0 + hBF(Y_m) + hf_n b + hDF(-A_*Y_m - y_n a_* + hB_*F(Y_m) + hf_n b_*) \equiv G(Y_m);$$

thus

$$G'(Y_m) = h[BF'(Y_m) + DF'(Y_{m+v})(-A_* + hB_*F'(Y_m)].$$

If h is suitably small, we have $||G'(Y_m)|| < 1$. Then (2.2) has a unique solution. In practice, we may have to presume the existence of a solution.

With the method (2.2), we define two linear difference operator vectors $\mathcal L$ and $\mathcal L^*$ by

$$\mathcal{L}[Y_m(x);h] = Y_m(x) - y(x)K^0 - hBY'_m(x) - hy'(x)b - hDY'_{m+v}(x), \qquad (2.3)$$

$$\mathcal{L}^*[Y_m(x);h] = Y_{m+v}(x) + A_*Y_m(x) + y(x)a_* - hB_*Y_m'(x) - hy'(x)b_*, \qquad (2.4)$$

where $Y_m^{(i)}(x) = (y^{(i)}(x+h), \dots, y^{(i)}(x+kh))^T, Y_{m+v}^{(i)}(x) = (y^{(i)}(x+v_1h), \dots, y^{(i)}(x+v_kh))^T, i = 0, 1$. Expanding $y(x+ih), y(x+v_ih)$ and their derivatives as Taylor series about x and collecting terms in (2.3) and (2.4) give

$$\mathcal{L}[Y_m(x);h] = y(x)c_0 + hy'(x)c_1 + \cdots + h^p y^{(p)}(x)c_p + \cdots, \qquad (2.5)$$

$$\mathcal{L}^*[Y_m(x);h] = y(x)c_0^* + hy'(x)c_1^* + \ldots + h^q y^{(q)}(x)c_q^* + \ldots, \qquad (2.6)$$

where c_p and c_q^* are constant vectors. Comparing (2.3) and (2.4) with (2.5) and (2.6), we have

$$\begin{cases} c_{0} = 0, \\ c_{1} = K - BK^{0} - b - Dv^{0}, \\ c_{p} = K^{p}/p! - BK^{p-1}/(p-1)! - Dv^{p-1}/(p-1)!, \quad p = 2, 3, \dots, \end{cases}$$

$$\begin{cases} c_{0}^{*} = v^{0} + A_{*}K^{0} + a_{*}, \\ c_{1}^{*} = v + A_{*}K - B_{*}K^{0} - b_{*}, \\ c_{q}^{*} = v^{q}/q! + A_{*}K^{q}/q! - B_{*}K^{q-1}/(q-1)!, \quad q = 2, 3, \dots, \end{cases}$$

$$(2.7)$$

where $K^s = (1^s, 2^s, \dots, k^s)^T$ and $v^s = (v_1^s, v_2^s, \dots, v_k^s)^T$. For formula (2.2), a convergence theorem can be easily obtained.

Theorem 1. Suppose the method is defined by (2.2), and the linear difference operator vectors \mathcal{L} and \mathcal{L}^* satisfy $\|\mathcal{L}\| = O(h^{p+1})$ and $\|\mathcal{L}^*\| = O(h^{q+1})$. Then the method is convergent with global error of order h^r where $r = \min(p, q+1)$, and the method is said to be of order r.

In order to obtain a high order method, we choose $B, D, A_*, B_*, b, v, a_*, b_*$, as follows:

$$b = K - BK^0 - Dv^0, (2.9a)$$

$$K^{p}/p! - BK^{p-1}/(p-1)! - Dv^{p-1}/(p-1)! = 0, \quad p = 2, 3, ..., 2k+2;$$
 (2.9b)

$$\begin{cases} a_* = -v^0 - A_* K^0, \\ b_* = v + A_* K - B_* K^0, \end{cases}$$
 (2.10a)

$$v^{q}/q! + A_{*}K^{q}/q! - B_{*}K^{q-1}/(q-1)! = 0, \quad q = 2, 3, ..., 2k+1.$$
 (2.10b)

Then we have

Theorem 2. The method (2.2) of order 2k + 2 exists uniquely.

Proof. It is sufficient to prove that solutions of (2.9b) and (2.10b) exist uniquely. Since equations (2.9b) and (2.10b) are nonlinear, there are some troubles. However, if we can determine v such that $v_i \neq j, i = 1, 2, ..., k, j = 0, 1, ..., k$, and $v_i < v_j$ when i < j (the determination of v will be given in §3), then substituting v into the first 2k equations of (2.9b) we obtain a system of equations whose coefficient matrix is a Vandermonde matrix. Hence B, D are determined uniquely. Substituting v into (2.10b) gives

$$(A, -B_*) \begin{pmatrix} K^2 & K^3 & \cdots & K^{2k+1} \\ 2K & 3K^2 & \cdots & (2k+1)K^{2k} \end{pmatrix} = -(v^2, v^3, \dots, v^{2k+1}). \tag{2.11}$$

Let

$$X = \begin{pmatrix} K^2 & K^3 & \cdots & K^{2k+1} \\ 2K & 3K^2 & \cdots & (2k+1)K^{2k} \end{pmatrix}$$
 and $z = (z_1, \dots, z_{2k})^T$.

If Xz = 0, then

$$\begin{cases} z_1 K^2 + z_2 K^3 + \ldots + z_{2k} K^{2k+1} = 0. \\ 2z_1 K + 3z_2 K^2 + \ldots + (2k+1)z_{2k} K^{2k} = 0. \end{cases}$$
 (2.12)

Let h(x) be a polynomial

$$h(x) = z_1 x^2 + z_2 x^3 + \ldots + z_{2k} x^{2k+1}. \tag{2.13}$$

Then, from (2.12) we have h(j) = h'(j) = 0, j = 0, 1, ..., k. Thus the polynomial h(x) has at least 2k + 2 zeros, and so $z_1 = z_2 = ... = z_{2k} = 0$. Hence X is nonsingular, and A_* , B_* are determined uniquely.

§3. Numerical Stability

When formula (2.2) is applied to the test equation $y' = \lambda y$, Re $\lambda < 0$, it is of the form

$$(I - \bar{h}B + \bar{h}DA_* - \bar{h}^2DB_*)Y_m = y_n(K^0 + \bar{h}b - \bar{h}Da_* + \bar{h}^2Db_*)$$
(3.1)

where $\bar{h} = \lambda h$. Let

$$x(\bar{h}) = (I - \bar{h}B + \bar{h}DA_* - \bar{h}^2DB_*)^{-1}(K^0 + \bar{h}b - \bar{h}Da_* + \bar{h}^2Db_*), \tag{3.2}$$

where $x(\bar{h}) = (\xi_1(\bar{h}), \dots, \xi_k(\bar{h}))^T$. Then we have

$$\begin{cases} y_{n+k} = \xi_k(\bar{h})y_n = [\xi_k(\bar{h})]^{m+1}y_0, \\ y_{n+j} = \xi_j(\bar{h})y_n = \xi_j(\bar{h})[\xi_k(\bar{h})]^m y_0, \ j \neq k. \end{cases}$$
(3.3)

Definition. The block implicit hybrid method (2.2) is said to be absolutely stable for \bar{h} if $|\xi_k(\bar{h})| < 1$. The region of absolute stability is defined as the set $S = \{\bar{h} \mid |\xi_k(\bar{h})| < 1\}$. The method (2.2) is said to be A-stable if $C^- \subset S$.

In order to obtain the explicit expression of x(h), using Cramer's rule, we can rewrite x as

$$x(\bar{h}) = \sum_{i=0}^{2k} p_i \bar{h}^i / \sum_{i=0}^{2k} r_i \bar{h}^i, \ r_0 = 1,$$
 (3.4)

where $p_i = (p_i^{(1)}, \dots, p_i^{(k)})^T$. Multiplying by $\sum_{i=0}^{2k} r_i \bar{h}^i (I - \bar{h}B + \bar{h}DA_* - \bar{h}^2 DB_*)$ on both

sides of (3.2) from left, and comparing coefficients in hi, we obtain

$$p_0 = r_0 K^0, (3.5a)$$

$$p_1 + (DA_* - B)p_0 = r_1K^0 + r_0(b - Da_*),$$
 (3.5b)

$$p_{i+1} + (DA_* - B)p_i - DB_*p_{i-1} = r_{i+1}K^0 + r_i(b - Da_*) + r_{i-1}Db_*, i = 1, 2, \dots, 2k-1, (3.5c)$$

$$(DA_* - B)p_{2k} - DB_*p_{2k-1} = r_{2k}(b - Da_*) + r_{2k-1}Db_*, \tag{3.5d}$$

$$DB_*p_{2k} = -r_{2k}Db_*. (3.5e)$$

Eliminating v from (2.9) and (2.10), we have

$$K + (DA_* - B)K^0 + Da_* - b = 0,$$
 (3.6a)

$$K^2/2! + (DA_* - B)K - DB_*K^0 - Db_* = 0,$$
 (3.6b)

$$K^{p+2}/(p+2)! + (DA_* - B)K^{p+1}/(p+1)! - DB_*K^p/p! = 0, \quad p = 1, 2, ..., 2k.$$
 (3.6c)

Then we can determine p_i , r_i from (3.5) and (3.6).

Lemma 1. If the method (2.2) is defined by (2.9) and (2.10), then

(i)
$$p_i = \sum_{s=0}^i r_{i-s} K^s/s!, \quad i = 0, 1, \dots, 2k,$$
 (3.7)

(ii)
$$r_i = (2k-i+1)(2k-i+2)\varphi^{(2k-i)}(0)/(2k+2)!, \quad i=0,1,\ldots,2k,$$
 (3.8)

where

$$\varphi(x) = [(x-1)(x-2)\dots(x-k)]^2. \tag{3.9}$$

Proof. Since $r_0 = 1$, then $p_0 = K^0$. From (3.5b) and (3.6a), we have

$$p_1 = -(DA_* - B)K^0 + b - Da_* + r_1K^0 = K + r_1K^0.$$

Suppose (3.7) is true for $i \leq 2k-1$. Then for i+1 we have

$$p_{i+1} = -(DA_* - B) \sum_{s=0}^{i} r_{i-s} K^s / s! + DB_* \sum_{s=0}^{i-1} r_{i-s-1} K^s / s! + r_{i-1} Db_* + r_i (b - Da_*) + r_{i+1} K^0$$

$$= r_i [-(DA_* - B) K^0 + b - Da_*] + r_{i-1} [-(DA_* - B) K + DB_* K^0 + Db_*]$$

$$+ \sum_{s=1}^{i-1} r_{i-s-1} [-(DA_* - B) K^{s+1} / (s+1)! + DB_* K^s / s!] + r_{i+1} K^0$$

$$= r_i K + r_{i-1} K^2 / 2! + \sum_{s=1}^{i-1} r_{i-s-1} K^{s+2} / (s+2)! + r_{i+1} K^0 = \sum_{s=0}^{i+1} r_{i+1-s} K^s / s!$$

Thus (3.7) holds for $i \leq 2k$. From (3.5d) we have

$$(DA_* - B) \sum_{s=0}^{2k} r_{2k-s} K^s / s! - DB_* \sum_{s=0}^{2k-1} r_{2k-1-s} K^s / s! = r_{2k} (b - Da_*) + r_{2k-1} Db_*.$$

That is

$$r_{2k}[-(DA_* - B)K^0 + b - Da_*] + r_{2k-1}[-(DA_* - B)K + DB_*K^0 + Db_*]$$

$$+ \sum_{s=1}^{2k-1} r_{2k-1-s}[-(DA_* - B)K^{s+1}/(s+1)! + DB_*K^s/s!]$$

$$= r_{2k}K + r_{2k-1}K^2/2! + \sum_{s=1}^{2k-1} r_{2k-1-s}K^{s+2}/(s+2)! = 0.$$

Then we have

$$\sum_{s=0}^{2k} r_{2k-s} K^{s+1}/(s+1)! = 0. \tag{3.10}$$

From (3.5e) we can have

$$\sum_{s=0}^{2k} r_{2k-s} K^{s+2}/(s+2)! + (DA_* - B) \sum_{s=0}^{2k} r_{2k-s} K^{s+1}/(s+1)! = 0.$$

Then from (3.10) we have

$$\sum_{s=0}^{2k} r_{2k-s} K^{s+2}/(s+2)! = 0. \tag{3.11}$$

Let

$$g(x) = \sum_{s=0}^{2k} r_{2k-s} x^{s+2} / (s+2)!$$
 (3.12)

From (3.10) and (3.11) we have g(j) = g'(j) = 0, j = 0, 1, ..., k; hence

$$g(x)/x^2 = \sum_{s=0}^{2k} r_{2k-s} x^s/(s+2)! = \varphi(x)/(2k+2)!$$

and so

$$r_{2k-s} = (s+2)! \varphi^{(s)}(0)/(2k+2)! s! = (s+1)(s+2)\varphi^{(s)}(0)/(2k+2)!$$

Let i = 2k - s. Then (3.8) holds.

In fact, we can also determine v uniquely. From (3.5e) and (2.10) we have

$$r_{2k}D(v+A_*K) + DB_* \sum_{s=1}^{2k} r_{2k-s}K^s/s! = r_{2k}D(v+A_*K)$$

$$+D\sum_{s=1}^{2k} r_{2k-s}[v^{s+1}/(s+1)! + A_*K^{s+1}/(s+1)!]$$

$$=D\sum_{s=0}^{2k} r_{2k-s}v^{s+1}/(s+1)! + DA_*\sum_{s=0}^{2k} r_{2k-s}K^{s+1}/(s+1)! = 0.$$

By using (3.10), we have

$$\sum_{s=0}^{2k} r_{2k-s} v^{s+1}/(s+1)! = 0. \tag{3.13}$$

MIAO JIAN-MING

Hence $v_j(j=1,2,\ldots,k)$ are k zeros of $[\varphi(x)x^2]'=2x(x-1)\cdots(x-k)[x(x-1)\cdots(x-k)]';$ then $v_j(j=1,2,\ldots,k)$ are k zeros of $[x(x-1)\cdots(x-k)]'$. It can be easily seen that $v_i \in (i-1,i), i=1,2,\ldots,k$, so Theorem 2 holds.

In order to consider the numerical stability, we write $\xi_k(h)$ as

$$\xi_k(\bar{h}) = \sum_{i=0}^{2k} p_i^{(k)} \bar{h}^i / \sum_{i=0}^{2k} r_i \bar{h}^i \equiv P(\bar{h}) / R(\bar{h}). \tag{3.14}$$

Then we have Lemma 2.

Lemma 2.

$$p_i^{(k)} = (-1)^i r_i, \quad i = 0, 1, \dots, 2k.$$
 (3.15)

Proof. From (3.7) we have

$$p_i^{(k)} = \sum_{s=0}^i r_{i-s} k^s / s!$$

by (3.8),

$$p_{i}^{(k)} = \sum_{s=0}^{i} (2k - i + s + 1)(2k - i + s + 2)\varphi^{(2k-i+s)}(0)k^{s}/(2k + 2)!s!$$

$$= \sum_{s=0}^{i} [(2k - i + 1)(2k - i + 2) + 2(2k - i + 2)s + s(s - 1)] \frac{\varphi^{(2k-i+s)}(0)k^{s}}{(2k + 2)!s!}$$

$$= [(2k - i + 1)(2k - i + 2)\varphi^{(2k-i)}(k) + 2(2k - i + 2)k\varphi^{(2k-i+1)}(k) + k^{2}\varphi^{(2k-i+2)}(k)]/(2k + 2)!$$

Take 2k - i + 2 derivatives on both sides of the equality $(x - k)^2 \varphi(k - x) = \varphi(x)x^2$ and put x = 0. Then we have

$$(2k-i+1)(2k-i+2)\varphi^{(2k-i)}(k) + 2(2k-i+2)k\varphi^{(2k-i+1)}(k) + k^2\varphi^{(2k-i+2)}(k)$$

$$= (-1)^i(2k-i+1)(2k-i+2)\varphi^{(2k-i)}(0).$$
(3.16)

By use of (3.16), $p_i^{(k)}$ becomes

$$p_i^{(k)} = (-1)^i (2k-i+1)(2k-i+2)\varphi^{(2k-i)}(0)/(2k+2)! = (-1)^i r_i, i=0,1,\ldots,2k.$$

Hence $R(h) \equiv P(-h)$. Then we have

Theorem 3. If the zeros of the polynomial P(h) are all in the left-plane C^- , then the block implicit hybrid method (2.2) is A-stable.

Proof. Since the zeros of P(h) are all in C^- , P(-h) has no zero in C^- ; hence $\xi_k(h)$ is analytic in C^- . From $|\xi_k(iy)| = 1$, $y \in (-\infty, \infty)$, $i = \sqrt{-1}$, and $|\xi_k(h)| \to 1$ as $|h| \to \infty$, by using the maximum modulus principle, we have $|\xi_k(h)| < 1$, $h \in C^-$. This completes the proof.

Lemma 3. Let $z_k^{(l)}$, $1 \le l \le 2k$, be the zeros of the polynomial P(z). Then

$$\operatorname{Re} z_k^{(l)} < 0, \quad 1 \le l \le 2k, k = 1, 2, \dots, 5.$$
 (3.17)

Proof. Decompose P(z) into two polynomials E(z) and F(z), which contain respectively only the even and odd terms of P(z). Then, with $g(z) \equiv E(z)/F(z)$, it follows that

$$P(z)/F(z)=g(z)+1.$$

We expand the function g(z) into fractions:

$$g(z) = a_0 z + \frac{1}{a_1 z + \frac{1}{a_2 z}}$$

$$+\frac{1}{a_t z}$$

By calculation, we have $a_i > 0$ for k = 1, 2, ..., 5. Since the coefficients of the fraction are positive real numbers, if $\text{Re}z \geq 0$, we have $\text{Re}g(z) \geq 0$. Thus $\text{Re}[P(z)/F(z)] \geq 1$; hence $P(z) \neq 0$.

Theorem 4. Block implicit hybrid methods (2.2) defined by (2.9) and (2.10) are A-stable

for block sizes k = 1, 2, ..., 5.

The coefficient matrices and vectors are displayed in Table 1 for $k \leq 3$.

Table 1

6	ь	a.	8.	v		В	
1	<u> </u>		1 7	$\frac{1}{2}$		$\frac{1}{6}$	1000 1000
+	31	$-5-2\sqrt{3}$	3 + √3	$3-\sqrt{3}$		4 1	
2	240	$-5+2\sqrt{3}$	54	3 (5		5 240 8 2	
	2.00-2.00			$\frac{3-\sqrt{3}}{54}$ $\frac{3+\sqrt{3}}{3}$	15 15		
+	106	$\frac{18}{27 + 10\sqrt{5}}$	1 √5	3 - √5	151	11	1
	945 107		24 72	2	420 58	420 23	945 2
3				3 7		105	945
١	945	$-27 + 10\sqrt{5}$	$\begin{array}{c c} \hline 512\\ \underline{1} & \sqrt{5} \end{array}$	$3+\sqrt{5}$	105 81	105 81 140	4
	35	108	$\frac{\overline{24}}{72}$		140		35
k		D		A		B.	a 22 13
1	- M. S. S. S.	- 2 3		$-\frac{1}{2}$			
2	$\frac{3}{10} + \frac{3\sqrt{3}}{16}$	$\frac{3}{10} - \frac{3\sqrt{3}}{16}$	- 4 9	$-\frac{5-2\sqrt{3}}{18}$	$-\frac{4\sqrt{3}}{27}$ $4\sqrt{3}$	U 2000 V	$\frac{+\sqrt{3}}{4}$
	3 5	3 5	$-\frac{7}{9}$	$\frac{5+2\sqrt{3}}{18}$	27	5	4
7	41 2√5	16 41 2√5	_1	$1 -27 + 10\sqrt{5}$	$\frac{-1-\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$	$\frac{-3+\sqrt{5}}{72}$
	140 15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 243 _ 2	4 108 43 13	8 81	8 81	72 3
3	$\frac{2}{5} + \frac{2\sqrt{5}}{15}$	$\frac{512}{945}$ $\frac{2}{7} - \frac{2\sqrt{5}}{15}$		12 512	512	512	512
	7 15 81	$\frac{16}{35}$ $\frac{81}{140}$	_1	$\frac{1}{2}$ $-27 - 10\sqrt{5}$	$-1 + \sqrt{5}$	$1 + \sqrt{5}$	$\frac{-3-\sqrt{5}}{2}$
	81 140	35 140	4	4 108	1 8	8	72

§4. Numerical Examples

When we apply the Newton iteration to solve the nonlinear equations (2.2), the following matrix needs inversing during the iteration:

$$Q = I - hB \frac{\partial F(Y_m)}{\partial Y_m} - hD \frac{\partial F(Y_{m+v})}{\partial Y_m} - \left(A_* + hB_* \frac{\partial F(Y_m)}{\partial Y_m}\right), \tag{4.1}$$

where

$$\frac{\partial F(Y_m)}{\partial Y_m} = \operatorname{diag}(J_{n+1}, \dots, J_{n+k}), \frac{\partial F(Y_{m+v})}{\partial Y_m} = \operatorname{diag}(J_{n+v_1}, \dots, J_{n+v_k}), \tag{4.2}$$

and

$$J_i = \frac{\partial f}{\partial y}(x_i, y_i). \tag{4.3}$$

When (2.1) is a system containing m differential equations, then Q is a matrix of order km; if k is large, much work should be done on inversing Q. Therefore, for practical use, we let k=2. Then the order of the method is 6. In the following, we only discuss the case k=2. For convenience, we assume that m=1, which can easily be generalized to m. When the Newton iteration is convergent, the matrix Q can be replaced by an approximation. In fact, we may use

$$J = diag(J_{n+1}, J_{n+1}) \tag{4.4}$$

to approximate $\frac{\partial F(Y_m)}{\partial Y_m}$ and $\frac{\partial F(Y_{m+v})}{\partial Y_m}$. Then we have

$$Q \cong I - h(B - DA_*)J - h^2 DB_*J^2. \tag{4.5}$$

Let k=2, h=0.1. Some numerical results are given in Table 2; the number of iterations is two or three.

Example 1. $y' = 1/(1+x)^2 - 2y^2$, y(0) = 0.

Example 2. $y' = \frac{y}{4}(1 - \frac{y}{20}), y(0) = 1.$

Example 3. $y' = 1000x^3 - 1000y + 3x^2, y(0) = 0$.

Table 2

	Example 1		Example 2		Example 3	
x_n	y _n	еггог	y _n	error	y_n	error
0.5	.4	2.32E-08	1.125655	3.78E-08	.125	3.12E-10
1.0	.5	2.86E-09	1.266046	3.04E-08	1	1.27E-08
1.5	.4615385	1.01E-08	1.422627	5.01E-08	3.375002	4.62E-09
2.0	.4	1.73E-11	1.596923	1.97E-08	8.000003	2.14E-07
2.5	.3448276	2.23E-08	1.790516	8.76E-08	15.625	4.05E-08
3.0	.3	3.49E-08	2.00502	1.64E-08	26.99998	7.78E-07

Example 4.
$$\begin{cases} y' = 998y + 1998z, \\ z' = -999y - 1999z, y(0) = 1, z(0) = 0. \end{cases}$$

This is a system of stiff equations. The eigenvalues are -1 and -1000, and the solution

is
$$\begin{cases} y = 2e^{-x} - e^{-1000x}, \\ z = -e^{-x} + e^{-1000x} \end{cases}$$

Let k = 2, h = 0.01. The prescribed tolerance for iterations is $\varepsilon = 10^{-4}$. "Max error" denotes $\max\{|y_j - y(x_j)|, |z_j - z(x_j)|\}$. Then numerical results are given in Table 3.

Table 3

x	y	z	Мах еггог	
0.1	1.809528	9046904	1.47E-04	
0.2	1.637466	8187357	4.99E-06	
0.3	1.481635	7408174	1.48E-06	
0.4	1.340636	6703158	4.53E-06	
0.5	1.213059	6065297	2.07E-06	

The author wishes to thank Professors Kuang Jiao-xun and Wang Guo-rong for their valuable suggestions.

References

- [1] O.Axelsson, A class of A-stable methods, BIT, 9(1969), 185-199.
- [2] T.A.Bichart and Z.Picel, High order stiff stable composite multistep methods for numerical integration of stiff differential equations, BIT 13(1973), 272-286.
- [3] G.Birkhoff and R.S. Varga, Discretization errors for well-set Cauchy problems: I, J. Math. and Phys, 44(1965), 1-23.
- [4] J.D.Lambert, Computational Methods in O.D.E., John Wiley & Sons, 1973.
- [5] J.B.Rosser, A Runge-Kutta for all seasons, SIAM Rev., 9, 1967.
- [6] L.F.Shampine and H.A. Watts, Block implicit one-step methods, Math. Comp., 23(1969), 731-740.
- [7] H.A. Watts and L.F. Shampine, A-stable block implicit one-step methods, BIT, 12(1972), 252-266.
- Zhou Bing, A-stable and L-stable block implicit one-step methods. JCM, 3(1985), 328-341.