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- Abstract

In this paper, the concept of optimally scaled matrix and the estimate of ||[M ™' N||oo
in our previous paper are used to find the upper bounds of the spectral radii of the

iterative matrices SOR, SSOR, AOR and SAOR. The sharpness of the upper bounds
of the spectral radii of SOR and AOR is established. The proofs are very intuitive and
may be considered as the geometrical interpretations of our theorems.

§1. Introduction

It is well-known that if the coefficient matrix A of a system of linear algebraic equations
. @

Az = f (1)
is a nonsingular A-matrix and
0 <w < 2/[1+ S(|J])], (2)
then the spectral radius S{L7) of the SOR iterative matrix
LA =(D-wL) (1 - w)D +wl]} (3)
satisfies (see [1], for example)
S(L4) < [1-w| +wS() = 6 @

where D = diag(A},B = D — A, L and U are lower and upper triangular matrices of B
respectively and

J=D"'R (5)

is the Jacobian iterative matrix of A.
In [2], it is proved that the upper bound in (4) is sharp, that is, given v € [0,1) and
w € [0,2/(1 + v)], the equality

sup {S(LA)} = |1 —w|+wv
AcH,

holds, where H, is the set of all nonsingular H-matrices with
Wiss S('Jl): (6)

which is obviously less than one, and L# is the SOR iterative matrix of A.
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For the symmetric SOR (SSOR) iterative matrix

Sa = US LS, (7)
wh;ere
UA = (D - M) (1 -w)D+wL] (8)
we have from |3]
| S(85) <1 —w|+wS(J]). (9)

In this paper, we use the theorems abour |M~!N|lo and the optimally scaled matrix
in |4 to derive the upper bound of L2 and S* and then generalize our results to the AOR
and SAOR matrices

LA =(D—-rL) '(1-w)D+ (w—r)L +wlU], (10)
and
54, = UALIA,, (1)
where
UA, =(D-7U)"{1-w)D+(w— 1)U +wl]. (12)
We obtain #
S(54) < (11 - w} +wv)?, ' (13)
S(L2,) <11 —wl+wy (14)
and
S(S2)) < (|1 - w|+ wv)?. (15)

The upper bound in (13) is obviously better than in (9).

Further, we prove also the sharpness of the upper bounds of S(LA) and S{L2,). Our
method is very intuitive and may be considered as a geometrical interpretation of the upper
bounds and their sharpness. Moreover, the matrices used here are more general than those
in [3].

t2. The Upper Bounds of the Spectral Radii of L2, 52, L2, and §7,

First, for completeness, we present the theorems in [4], which will be used here, as our

lemmas:
Lemma 1. If M = (my;) and N = (n;;) are n X n matrices and

| ] 3"2 Imisl, 1=1,2,---,n, (16)
IFs
then
[M 71V oo < max [ 3 Il (Imaal = D lrmis ] (17)
j 154
Lemma 2. If A is an irreducible matriz, D = diag(A) 13 nonsingular and B= D — A,
then there is a posttive diagonal matriz Q@ = diag(g1,92, -, qn) such that the matriz

A = (&;) = AQ (18)
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salisfies
> lasl/ lasl = SO, i=12,-,n (19)
IF
We call this matriz A the optimally scaled matriz of A.
Now, we prove our theorems.

Theorem 1. If A 1is a nonsingular H-matriz and w lies in the interval (2), then we have
the estimates (4), (13), (14) and (15).
Proof. First we assume that A = (a;) is irreducible and

0 <w < 2/[1+ S(|J])]. (20)

From Lemma 2, there is an optimally scaled matrix A = (aq,) satisfying (18) and (19). But

A is a nonsingular H-matrix; thus inequality (16) holds and A is a daigonally dominant
matrix, 1.e.

|aﬁ| > Zlﬁ".fll 1= 1:2:"'1'1- (21)
F#1
Now, from {20} we have

8] —w > fais| > lass| - {2/[1+ 50N} Y Ias,

= {18l + X las,] — 23 [aist} /{1 + 507D}
J7s 1<

= {Iﬁiﬁl + Z jas5] - Z |ﬁ=':'|}/{1 + S(IJU}

> 23" Jal/[1+ S]] 2 0.

Hence, we can apply leinma 1 to the SOR iterative matrix Lf of the optimally scaled matrix
A and obtain

S(L3) = S(L8) < 1LL o
< max { (1~ w] ] +w 3 Jausl) /(e — 0 3 [}

7> 7<1

max 1 - wl + w z iz /|Gis|] /(1 — w Z |&i:.-"f'|&='i|]}

F>s J<t

~

J<s <

A

{
max { [|1 - w| +wS(1) - w D [al/1isl] /[ - w Y [as51/1as])
{

max { [1 - w| +wS(J))} = |1 - w| + wS(|J]).

.

The first equality holds, since L2 is similar to Lf and the last inequalty holds, if and only
y :

11— w|+wS(J]) <1,
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which is obviously true under the condition of (20). Thus, we have proved the estimate (4)
when A is an irreducible H-matrix. Similarly, for the iterative matrix UZ of (8) we have

S(US) =8UZ) < UL lleo -~ 11 = w] + wS(|J]),

where Uf is the iterative matrix (8) corresponding to A. Now, for the SSOR matrix S4 of
(7) we have at once

S(82) = 8(53) <185 oo S ILGHNUS Moo < {2 — w| +wS(|])},

which proves the estimate (13).
For the iterative matrix of AOR in (10}, we proceed similarly and obtain

S(LA,) = 8(1A.) < LA, es

< m:‘;].x{“l —wllaﬁl + (w = T) Z Iaijl T W Z |ﬁi:‘|]f[|aﬁ| . TZ |a£3’”}

= max { (11— w|+ wS(|J]) -~ 7 Z |&ij-i/i:‘iii]/[1 —~ Z Iﬁﬁlflﬁﬁll}

»
< 1 - w]+wS(|J)).

For the SAOR matrix S7_ of (11) we obtain

S(SA,) = S(SA,) < 1S4, lleo € NLA NallUA lloo < {I1 — w| +wS(|])}2,

1“ 1”

where SA LA  and Ufm are the matrices (11), (10) and (12) corresponding to the matrix

A respectively.

Up to now, we have proved the estimates (4), (13), (14) and (15) under the condition that
A 15 an irreducible H-matrix. Now, we assume that A is a reducible H-matrix. As usual,
let D = diag{A) and B = D — A. We construct an irreducible matrix A, by replacing some
zero elements of B by a small positive number £. Let D, = diag{A,) and B, = D, — A,.

Obviously,
S(|De|™*|Be) — S(|D|"*|B]),  ase—0.

Since A 18 a nonsingular H-matrix, we have
S(D|-*|B]) < 1.
Thus we can find a small positive number £y such that
S(IDel™*|Be|) <1, Vee€(0,60),

which means that A, is an irreducible nonsingular H-matrix for arbitrary € € (0, ). Hence,
for the AOR 1terative matrix L, , as an example, we have

S(LAL) < 1 - w] + wS(|T4)) (22)

whenever

0<w {2f[1+S[|JA‘|) B (23)
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where L;f':;, and J4« are the AOR and Jacobian iterative matrices corresponding to the
matrix A, respectively. Now, for arbitrary w in the interval

O<w< 2”1-{- S(lJm:: iy
we can find e, € (0, &) such that

0<w<2/[1+S(J*

)]: Vec€ (0: €1)

slne
Be = |4, as e — 0.

Thus for arbitrary € € (0,¢€;), inequality (22) holds. Putting ¢ — 0, we obtain (14) at once.
Hence (14) is proved when A is a reducible nonsingular H-matrix. The estimates (4), (13)
and (15) can be proved similarly.

Finally, from the continuity of the eigenvalues with respect to the elements of the matrix
considered, it is obvious that our conclusion also holds if we replace inequality (20) by (2).
This completes our proof. |

Note that the proof of this theorem may be considered as another proof of the convergence
of SOR, SSOR, AOR and SAOR iterative matrices.

’
§3. The Sharpness of the Upper Bounds of S{LA)

In [2], in order to prove the sharpness of A(L#), the authors use the matrices:
[ 0 1 1

0 1
A=I-B and B=v , O<u<l, (24)

1

=] -

In this paper, we use instead of (24), matrices of order p = ¢ + r:

Oﬂ':‘ff I*I

A=I—-B and Bzu[fr -

], Qoo lig1) =1, (25)

where Ogx, and O,y, are the null-matrices of order g *r and r » g respectively. Obviously,
(25) is more general than (24). Moreover, our proof is very intuitive and interesting, and it
may be considered as a geometrical interpretation of the upper bounds and their sharpness.
Besides, this method is also applied in this paper to prove the sharpness of the upper bound
of S(L, ) (see §4).

Now, we consider the matrices (25), where r is fixed and p changes to infinity. There are
two cases:

1. 0 <w < 1.

Since the matrix A in (25) is consistently ordered, it follows from (5] that

(A +w~ 1)° = vPWPA", (26)

1.e.
A+w—1)jw=VA/P, (27)
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where A is the eigenvalue of LA ,p = ¢+ r and A7/P is one of the roots of z° = A", Let
y=(A4+w—1)/w=:4d(3) and y=vA"P =:¢(A). (28)

From Fig. 1 it may be seen that the two curves in (28) have a point of intersection in
the right half A — y plane. Thus, there is a positive Ay which satisfies {27) and hence {26).
This A is therefore an eigenvalue of L2. Moreover, since the slope of the line y = d(}) is

l/w = PR/FR =1/FR, we have FR = w. Besides, from Fig. 1 we see that
| QR =y, PQ=1-v.
Hence,
SQ=w(l—v), TS=1-w(l-v)=|l-w|+twy, ED=X<TS

and E'D increases as p does. On the other hand, if A, is the limit of A as p tends to infinity,
from (27} we have

(Ao +w — 1)/w =19, le. A =|l—w|+wy.
But ’
) S{(LA) <1 — w|+wv.
These prove the sharpness of S(L2) when 0 < w < 1,

2. 1l<w<2/{1+ S5(|J])}.
Without loss of generality, we assume both p ang ¢ are odd numbers. Obviously, this

does not affect the proof of the sharpness. Putting

§ = A
in {26), we obtain
(7 + 1 — w)’ = vPwhn. (29)
From Fig. 2 the two curves
y=dn)=(n+1-w)/w and y=c(n):=ovy/P (30}
have a point of intersection (g, yo) in the right half n —y plane and Ay = —n 15 an eigenvalue

of LA. Just as in the previous case, it can easily be found that
EG=|1-w|+wS(|J)

and |Ag| = no = OH increases to EG as p increases to infinity. This completes the proof of

the sharpness of S{L2%).
Notice that if we keep ¢ fixed, then the second equation of {28) becomes

y = vAP=9/P = ) /29/P .= (1),

which decreases to v) as p increases to infinity (see Fig. 1). Since the point of intersection

of the two lines
y=A4+w-1)/w and y=vA
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18 ((1 —w)/(1 —wv), {{1 —w)v/(1 —wv)), we can only obtain

sup {S(L5)} 2 (1-w)/(1 - wv).

On the other hand, (30) becomes
y = yp(P—2/p — urrf.r;“"p,
which decreases to vn as p increases to infinity (see Fig. 2). The point of intersection of
| y=(m+1l-w)/w and y=ouy
is ((w— 1}/(1 — wv), {w — 1)v/(1 — wv)). Hence,

sup S(L3) > (w — 1}/(1 — wv).
AEH,

In both cases, we obtain
lw — 1|/{1 ~ wv) < sup S(L2) < |1 —w|+ wv

(Notice that wv < 2v/{1+ v) < 1). The left-hand side is zero when w = 1. This is really the
case; in fact, for arbitrary A€ H, (0 < v < 1),5(L;) = v?/7 - 0 as p — co.

§4. The Sharpness of the Upper Bound of S(L2 )

Now let us consider S(L# ). Since SOR is the special case of AOR with r = w, we have,

of course,
sup S(LA,) = |1—w|+wr.
AEH, O<r<w

But here by the sharpness of the upper bound of S(L#,) we mean

sup S(L2,) = |1 - w| + w.
AEH,

That is, for arbitrary v € (0, 1) and arbitrary w, 7 satisfying the inequality
0<7r<w<2/{1+v),

there is a matrix A € H,, such that § — ${L2,) is as small as we please. Now, from {26} it
may be proved the eigenvalues A of LA, satisfy

(At w—1)° = vPul(rd +w — *r)" (31)
or
(3 +w — 1)/w] = v{r/w) P} + (w/7) - 1],  (32)
First, we consider the case 0 < w < 1. le¢
y=(A+w~1)/w=:d(}) (33)
and

y = v(r/w) P\ + (/1) — /7 =i ¢(A). (34)
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Here for convenience, we still use c¢{)) to denote the function in (34). Note that
d(1l)=1 and ¢(l)=v<1.

From Fig. 3 we see that the situation is almost the same as that of §3 and the sharpness of

the upper bound of S{LA_ ) may be proved in the same manner as that of S{LJ).
Now we consider the case 1 < w < 2/(1+ S{|J|)}. There are two cases again:

1. 1/r <1+ v,
Assuming p and r are odd numbers and putting 5 = ~ A, we have from {30) the equation
(1 —w +1)P = vPw(rn —w + 7" (35)
The two curves
y=Mn-w+1)/w and y=v(r/w)7Pln—(w/r)+ 1]7/7 (36)

intersect at (no, yo) in the right-half (n,y) plane if p is sufficiently large, since 1/r <1+ v
implies
(w/7) -1 <w~1+wv

and (w/r) — 1 is the vertex of the second curve of (36) (see Fig. 4). Proceeding as in the
second part of §3, we have the sharpness of the upper bound of S{L# ) at once.

2. 1/7r >.1+%.

In this case, from Fig. 6 we see that there is no point of intersection in the neighbourhood
of G, even if p is sufficiently large. Thus Lf:w has no real eigenvalue which tends to ¢ in

absolute value as p increases to infinity. But there is another point of intersection. If
(w — 1)/w > v, from Fig. 5 it may be seen that the two curves have a point of intersection

(n0, ¥o) with no > 0. But no deceases to w — 1 — wv as p increases to infinity, so we can only

obtain the result
w—1—wv< sup {S(Ly,))} Sw—1+ww.
AcH,
If (w — 1)/w < v, from Fig. 6 we see that the two curves intersect at (o, yo) with n, < 0
and |ng| increases to wv — (w — 1), as p increases to infinity. Thus we have

wo—(w—1) < sup {S(L7,)} Swv+(w—1), (37)

Note that we can also use the curves y = d()) and y = ¢(A) in the A — y plane to obtain the

same result (37) (see Fig. 7).
Finally, we notice that due to the continuity of the eigenvalues of a matrix with respect

to its elements, the sharpness of the upper bounds of S{L2) and S(LZ,,) still hlods if we
replace the condition {20) by the condition (2). Hence, we have

Theorem 2. If A is a nonsingular H-matriz, then for arbitrary v € [0,1) and arbitrary
w € [0,2/(1 + v)|, the following equality holds:

sup {S(L)} = |1 - w|+ wv.
AcH,

Theorem 3. Let A be a nonsingular H-matriz and v € [0,1); then

=|1—w|+wv, when 0 < w < 1,
Sup {S(Lf.lw)} =‘|1—UJI+W‘I'.J, WhEHIﬁWi:Z/(l'*'U), lfITg 1+U1
AEH, >w—1)—wy|, whenl<w<2/(1+v), 1/7>1+wv.
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