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Abstract

By means of the theory of spline interpolation in Hilbert spaces, the bivariate poly-
nomial natural spline interpolation to scattered data is constructed. The method can
easily be carried out on a computer, and parallelly generalized to high dimensional
cases a8 well. The resulis can be used for numerical inregration in higher dimensions
and numerical solution of partial differential equations, and so on.

There are many papers about multivariate spline interpolation and a comprehensive and
important survey is given almost every two years in the world [1]-[5]. Now, B-splines,
B-nets, thin plate splines and radial functions!® are useful tools for interpolation, but a
method which can”asily be carried out on a computer with better variational properties is
- not found.

The first author of this paper has pointed out that based on variational consideration
with multiple restrictions via a generalized Euler equaiton, a simple, convenient and prac-
tical method for multivariate spline interpolation could be obtained, and in fact a suitable
generalized blending spline function space for solving problems of multivariate optimal in-
terpolation to scattered data throughout a rectangle with continuous boundary conditions
and discrete boundary conditions has been constructed in [7], [8]. But it needs to be revised
and has not yet been published in magazines.

By means of the theory and methods of spline interpolation in Hilbert spaces, we treat
again the bivariate polynomial natural spline interpolation to scattered data proposed in
8]. The method is simple and convenient; the solution has better variational properties
and suitable smoothing properties. It suits the solution of the problem of bivariate inter-
polation to scattered data without boundary conditions and can be generalized to similar
multivariate interpolation problems. The results can be used for numerical integration in
higher dimensions, the computer solution of partial differential equations and so on.

The notations in this paper can be found in [9], [10].

§1. Selection of Spaces and Definition of Operators

gminy gty | ;
Let X = H™"(R) = {u(z,y)lazmayn € L;(R), 3298yP 18 a absolutely continuous
function, a =0,m - 1,8 =0,n— 1;(z,y) € R = [a, b] x |, d]}
Let
n—1 m-1
Y = Ly(R) x [] Lz2la,8] x [] Lafe,d]
: =0 =0

* Received September 4, 1587.



136 : LI YUE-SHENG AND GUAN LU-TAI

n—1 .
be a product space where H Ljla,b] is a product space constructed by n Hilbert space

=0

Lz|a,b), and Z = R? be a p-dimensional Euclidean space. Suppose that they are all Hilbert
spaces.
We define a continuous linear operator T : X — Y with

m-—1
T = to X Ht""’ x [T ¢
=0 p=0
being a ﬁrﬂduct operator mapping X onto product space Y, where
amtiy(z, y
to : X — Ly(R), to(u) = ulmn) (z,v) = 3:‘.-:"13(3;11 )’
+v
(v) . () () = lmw)(p gy O ulz, y)
ty " : X — Lala,b],¢; ' (u) = u (z, d) 320y |yed
v=0.--,n—1
(1) 2 5 () () — (i) (p o) = O u(z, y)
tx — Lale, d|, t57" (u) = u'*™(}, y) Cyry ean N

p=0,---,m-1,
and define a linear continuous operator 4 : X — Z with
Au = [u[a'ﬁ](zi: yi)]:- a € If:ﬁ i J{,i = 1, N

with u(z,y) € X, the scattered interpolation nodes (z;,y;) € Rand ; c I ={0,---,m —
1}, J; € J = {0,--.,n—1} being arbitrary index sets. The total number of indices is dennted

by p.

Given p real numbers z; 7 (@ € I;,8 € J;,s = 1,N), we consider the following spline
interpolation problem in Hilbert spaces, which is called bivariate polynomial natural spline
interpolation problem, and its solution as bivariate polynomial natural spline interpolant.

Problem P. Find a function oz, y} € X satisfying

|ITe||¥ = min ||Tz||}

z€l,
where
Iy ={ue X[Au= 2,2 = lzfﬁ]f_—haen,ﬁe.n}
and
n-1
|Tz)|} = (Tz,Tz)y = (tos,toz}r,(r) + E(tgvlz, )z, o z (1) 2 (0 2 Y foaliel
=0 5=0

= JLm iy 3 [ @ o ade s S [ 000

=0 =0
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Let us denote {T'u, Tu}y as J(u). The problem is to find a function o(z,y) € H™"(R)
satisfying
| ﬂ'[“’ﬁ)(u"ﬁi:y{) =z?ﬁ1 {IEIHBEJ*I':": ]-:N:

and
J(o) =minJ{u), u(z,y)€ H™™(R), u*?(z;,w)=2"".
m-1in-1
Definition 1. A polynomaial of the form Z 2: ci;x'y’ 1s called an {m,n) order poly-
1=0 35=0
nomial; the set of all such polynomials 15 called (m,n) order polynomial space, denoted by
P{m,n).
Theorem 1. The null subspace of the operator T, N(T) = P < m,n >.
Proof. According to the definition of N(T) = {u € X|Tu = 0}, if v € N(T), then
u(z,y) € H™"(R) and

umm) (z,4) =0, (1.1)
w™ Nz, =0, v=0,--,n-1, (1.2)
ult?(by) =0, u=0,---,m-1. (1.3)
From (1.1) we get
» m—1 n—1
} u(z,y) = ) gilv)di(z) + D filz)d:(v)
1=0 1=0
with ‘ |
tﬁi(:ﬂ):I‘, £=0:"':m"1; ¢i(y)=y‘: izﬂ,---,n—l
and

g;(y)EH“[c,d], f—_-{],---,mw—]_; fi(E)EH"‘[ﬂ,b], 1:-_—0,*",11-'—'1
as arbitrary functions. Substituting (1.2) and (1.3) into it, we immediately get

n—1 m=-—1 n—1
> M@ (@) = Y d @™ (2) + 3 A (@) (d) = ™) (z,d) = 0,
1=0 1 =0 +1=0

v=0,---,n—1;
m—1 -1 n—1
> ™MWl (y) = E o™ (v)o{) (b) + E 9 )™ (y) = w# ™ (b, y) = 0,
=0

Noticing that
d () =9 ) =0, 524 ¢ V) =9l My =1

and that the coefficient matrix of the previous equations [about f™(z) and 91 )(y)) s
triangular, we have

™) =gy =0, i=0,n-1 F=0,--,m—1,

m—1in-—1 n—1m-—1 m—1ln-—1

u(z, y) Z E (l)y’z x x = x xc,-_.,-z"y".

1 =0 y=0 t=0 7=0




138 LI YUE-SHENG AND GUAN LU-TAI

That is,
ueP<mn>.

On the other hand, if u € P < m, n >, direct examination leads to
ut™n(z ) = ul™*) (g, d) = ulBm) (b,y) =0

the same as when

ue N(T).

Hence
N({T})=P<m,n>,

§2 Existence, Uniqueness, Characteristics and Variational
Properties of the Natural Spline

.Theorem 2. The bivariate polynomial natural snterpolation spline solution always ezists.
Proof. According to Theorem 1, we know that N(T) is a finite dimensional space, and
N(T) + N(A) must be a closed set in X. Using Theorem 4.4.1 in [9], we can prove this
existence theorem.
’
Denote .
Io = {u € X|Au = 0}.

Definition 2. We say that problem P is (m, n)-poised, provided thatu € IyNP < m,n >
implies u = 0.
It is eas}r to find that problem P is (m, n)-poised if and only if the rank of the matrix

= (@ ,uu)nEI v€J,a€l; el i=T,N»T r(A) 2 mn where

B gets (:r”y"]
(2,9} =(%:.9i) amaayﬂ

ol = ()

(z.9)=(ziwi)

Theorem 3. A sufficient and necessary condition for the ezistence of a unique bivariate
polynomial natural spline interpolation solution is that problem P 13 (m, n)-poised.
Proof. From the proof of Theorem 2, we know that N{T) + N(A) must be a closed set
in X. Now,
Ip = {u € X|Au =0} = N(A).

According to Theorem 1, P < m,n >= N(T). Since problem P is (m, n)-pulsed we get
N(T)n N(4) = {0}. Thus we can prove this theorem by Theorem 4.4.2 in [9].

Corollary 1. A necessary condition for the existence of a unique bivariate polynomial
interpolation natural apline solution is that the sum of total indices p > mn.

Proof. If it is not true, the rank of matrix A is less than mn, and problem P is thus not
(m, n)-poised. Then the snlutmns are not unique. |

Corollary 2. If m,n > 2, and there exists a unique bivariate polynomial interpolation
natural spline solution without derivative conditions, then all of the interpolation nodes will
not be in a line.

Proof. Since there are a; = (1,---,1)% a2 = (%1, -, zx8)7, a3 = (y1, -+, y~ )% in the
column vectors of matrix A, if y; = a + k(z; — b),s» = 1,---, N then a;,a3, a3 are linear
dependent. Then, r(A) < mn, and the solutions are not unique.
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Theorem 4 ( Characterization Theorem). o € I, is a bivariate polynomial anterpolation
natural spline iff

n—1

/f o™ (2, yyul™") (2, y)dzdy + Z/ (™) (2, d)ul ™) (2, d)da

=0

s Z / o™ (b, y)ult™) (b, y)dy = 0

=0

for any u(z,y) € I = N(A), 1.e. for an arbstrary funclion u{z,y) satisfying zero interpola-

tton conditions.
Proof. By our definition , the condition in theorem is < To, Tu >y = 0. From Theorem

4,5.1 in [9], we get this conclusion.
Definition 8. We call

= {a(z,y) € H"""(R)‘ //R ﬂ{m‘"}(m, y)u{""“’(z, y)dzdy

3 [ )z, g+ f o) (b, y)ul™) (b, y)dy = 0,¥u € N(4) }.

=0 p=0

a bivariate polynomial natural spline function space.
Theorem 5 (Existence and uniqueness). If the interpolation problem P is {m, n)-poised,

then for any given real vector z = [2™7] € RP, there ezists a unigue element o(z,y) in the

bivartate polynomial natural spline function space satisfying a{“'ﬁ}(z,, y;) = z“ﬂ a €l g
Ji,i=1N.

Praaf. From Theorem 2, we get the existence of a bivariate polynomial interpolation
natural spline solution, and in Theorem 4 we pointed out that this solution is in spline space
S. Thus, the argument about the existence of this theorem is proved.

Suppose that there are s;,32 € § such that agﬂ’ﬁ}{mg,y.:] = s(ﬂu’ﬂ}(mi,y;) zf"ﬂ. Let
8 = 8; — 8. Then -

8P (z;,4) =0, sely=N(A),
J(32) = J(s1) + J(8) + 2a(s;1, s)

where

ofon,8) = [[ ™ (@01t (z,)dzdy + 3 f (™) (2, d)s™ )z, d)dz

=0

o+ Z f [”’ ](b, y)a("'“}[b, y)dy.
=0
According to Theorem 4, a(s;,3) =0 and J(s3) = J(s1). Hence
J(s) =J(82) - J(31) =0, seN(T)=P<mn>,

Since problem P is (m, n)-poised, we get s = 0.
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Theorem 6 (First integral Relation). Suppose that o(z,y) is a bivariate polynomial
interpolatton natural spline solution, s(z,y) € S,,u(z,y) € I,. Then

J(u—38)=J(u—0c)+ J(c — s).
Proof. Since
Ju—s)=Ju—~oc+o0-3)=Ju—-0)+J{o—s)+alu—oc,0—3s),
u(z,y) € I,,0(z,y) € I, and s(z,y) € S,0(z,y) € S, it is easy to see u(z,y) — o(z,y) €

Io,o0(z,y) — s(z,y) € S,a(u — 0,0 — s) = 0. Thus, J(u~3) = J(u— 0) + J(o — s) and the
proof i complete. Especially, set s = 0. Then

n—1 b m—1 d
[l ey + 3 [Tt o s+ 3 [ ey

u=0"°

i u(m,n] = _J(m,n) g 2 7 = [* u{m,u] T _J(m,p} o 2 -
o) = oz + 3 [, d) - o)z,

m—1 ad »
+ 3 f (5047 (8, y) — ™) (b, y))2dy + fj;: (o™ ™) (z, y))2dzdy

fh==0 =
n-1 b m—1 d

3 [ e+ Y [Ce 6,9 e,
v=0"9 =0n"*ec

It is the generalization of the pp“first integral relation” in single variate functions.
Theorem 7 {Optimal Approximation Property). Suppose that z € RP 13 an arbitrarily
given element, o 13 an element in S, satisfying interpolation conditions:

o' (2, 5) = 2%, a€ L, e J,i=TN.

Then (1)J(c — u) = mélél J(s —u), VYu € I,. If & satisfies this properiy in S, then o — &
- s

13 an (m, n)-order polynomial. (2)J{(o — 3) = Hél}l J{u— 38}, Vs €S, and o 15 the unique

element satisfying this property in I, .
Proof. By the expression in Theorem 6, noticing

ﬂlg.}(a — 8) = min Ju—0}=0

and J(c ~ &) =0giveso —F€ N(T)=P <m,n >,

If there is another element & € I, such that J(¢) = J(o), then J(0 —G) = 0,0 — & €
Ip = N{A) and 0 — & € P < m,n >= N(T). Since problem P is (m, n})-poised, we deduce
that o = 0.

This theorem can be obtained by Theorem 4.5.7 in [9]. The second expression in this
theorem is also called minimum-norm property. From it we have

- Corollary 3.

J(o) = Eélﬂ J(u).
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Since this iz a result of setting s = 0 in the previous expression, it says that the element
o satisfying interpolation conditions in § has the minimum norm in all of the elements
satisfying the interpolation conditions in H™"(R) and the solution of problem P can be
obtained from finding an element satisfying the interpolation conditions in spline space S.

Theorems 6,7 and Corollary 3 are called variational properties of natural splines.

§3. Construction of Natural Splines

We know Z = RP is a finite dimensional space. Suppose that there exist k' Fe X
satisfying (k" Al u), = wl*fz;y),a € I,f € J;;i = 1,N for Vu € X. Thus, Au =

g
(K u)x ]aef.,ﬁeur..t-l i e ave
Lemma. If o(z,y) is o bivariate polynomial interpolation natural spline solution, then

P a e I;,f e J;,i =1, N such that

N
PN " 5. AP

t=1 Elefi ﬁEJ'.'

there must exist coefficlents A

where T 13 the adjoint operator T.
Proof. Fromythe characterization theorem, we have

(To,Tu)y =0, Vu(z,y) e N(A).

Hence

(T*"To,u)x =0, T Toec N(A)" .
Since
Au = [(k?ﬂ: ”)X]aen.ﬁe Jrg=1,N

and N(A)' is a finite dimensional space with basis elements kfﬁ acelh fedJ,i=1N.

there must exist coefficients A?ﬁ such that

N
T*Tn'::xx Z).fﬁk?ﬁ.

s=1 aE€l; B J;

For the sake of easy application, we consider simple interpolation without derivative

conditions first, in which case
N
= [(kii u}x]i=1,_N! " To= Z A
t=1

Theorem 8 {Construction Theorem). If o(z,y) 15 a bivariate polynomsial simple inter-
polation natural spline solution, then 1t can be ezpressed as

m—1ln—1

U(E: .'J) Z )‘tgl(I y) + E Z cnvm“

p=0 p=0Q
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where
gi(z,y) = Gz, y; zi, %),

" : catl e - T\zn‘l
b =N T

-1 T — Y T n—-v-1\
+Z(“1)mlm ) s ly d) [lf d) (—)" ld_f)‘l ]

(2m — 1)! (2n — v — 1)!

=0

=, .y -T2 m—b“ t — b)¥ et eie
+ 3 e PO T e )

- ﬂ=ﬂ

= ¢ are delermined by the follounng

The coefficients [A ] Py = Aoleuu R

linear system:

u=0m—1,r=0,n—1

& o] [e]=15]

where z 18 a given rac:.’ number set [z,]f;h—ﬂ, matriz A = (“i.?')i=1,_N.j=1,_N 18 an (N x N)
order matriz; matriz B = (b; 4 )T W pmo m=To—0m=7 1% G matriz with N rows and mn
columns; mairsiz B* is the transpose of B; a;; = g;(%i, %), bipp = zi'yY and 0 1s a zero
element mainz.

Proof. From the Lemma, we have

N
T*To=} Xk

1=1
For any fixed v € N(T),

(T*To,v)x = {To,Tvyy = {(To,0)y =0.

Hence
N N N
(T*To,v)x = (D Aiki,v) = > Ailki,v) = ) hiv{z, y:) = 0.
i=1 =] 1=1
m—1ln—1
Any element in N(T) can be expressed as Z Z du(z — b)*(y — d)¥. Then using the
=0 =0 :

previcus formula we deduce

N m—1n-—

>k ZA duw (2: — B)* (3 — d)” = (3.1)

1=1 u=0 =0

Especially, if the basis elements of N(T') are z*y", then

N :
Zkizfyf=0, p=0-- m—Lr=0,--,n—1.
=1
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This linear system expressed in matrix form is
B*A=0. (3.2)

Now let us expand u(z,y) at z = b according to the Taylor expansion with Peano integral
remainder first:

(I - b)"" lu(m -1, D}(b y)
(m — 1)t

u(z,y) = u(b, y) + (z — b)ul2:0) (s, y) + -

b _ aym-—1
+/ (—llm(r )T u[m.ﬁl(ﬂy)d.r_

(m — 1)!

Secondly, u(b,y),---, u('"'”'}(r, y) are expanded at y = d according to the Taylor formula:

m-1n—1

olzg) = 3 5 T e o,
"'Z_:f (_l)m(z;i];]1l(y p'd]y im¥)(r,d)
Low T (3.3
m—1 .d -1 g
+ 3 [ S B e, g

m+n (t—=)F " _ (t—y)} ! ylmn) (o ”
/,[( ! m—-;]! a2 U ribldrid,

Then, for any function u(z,y) in H™"(R) we have

(To, Tu)y = (T*To, u)x ZA ki w)x = Z,\‘(k, uyx = Z,\ w{zi, i) (3.4)

From (3.1},

. Y aulE) (b, d) (2 ~ b)#(y; - d)” = 0. (3.5)

Substituting z;, y; into (3.3) and using (3.4) and (3.5) we get

ym=-—1 i in—1
T{I Tu Y o //( 1)m+nzk $1)+ (t Yi - u[m'")(T,t}det

e (m—-1)t  (n—1)!

!
Lr=1{])

+Z;,/‘( ”"ZA (t_%lr;!l(% ;!b)” ulben) (b, t)de

= (TG, Tu)y.
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Changing the integral variables 7,¢t to z, y, from the definition we know that

N
G(:E, y) = Z Aigi(mz y)
i=1

where g; satisfy

i k= B =W
9} }(I: y) = (_1) (m b 1)! y(r.-, — 1-;! :

g™ (z,d) = (-1)™ (I(;I_i)f); e ;!d) 5

— )P (. o BB
g™ (b,y) = (-1)" (y(n E]ﬁ, ( '“!b)

It is easy to verify that g;(z,y) satisfy these conditions.

Since u is an arbitrary function, it is easy to see o(z,y} — G(z,y) € N(T). Thus, we get
the expression of o(z, y) in this theorem.

From interpolation :onditions o(zi, %) = 2z;,2 = 1, N, we have

v=0,---,n—1,

y p=0--,m—1L

AX + Be = 2. (3.6)

Combining (3.2) with (3.6}, we complete the proof of the theorem.

The theorem can be generalized as:

Theorem 9 (Construction Theorem). Suppose that o(z,y) 13 a bivariate polynomaial
interpols tson natural spline solution. Then 1t can be expressed in the form

N m—1n—1
o(my) =) D > Nallmy+ ) ) cwy”
i=1 a€l, Bc J, =0 v=>0
where
(z-z)3 " y-—w)i 7

6 (z,9) = (~1)mFrmes

(2m—a—1)! (2n- B -1}

B SRR CI Y s VRt [V i T

o (2m — a — 1)! v (v — )t

m-—1 B — ‘iﬂ—ﬂ—l z— b)Y {z; — b)H—« _— b— x; 2m—u—a—1
+;(_1)“ ﬁ(?Zniﬁ.—l)! ( p!) [[ (;;.—3::]! (-1) ( ) ]

and coefficients

o T s T
Gv= [CF”]“zﬁ',m_—l,u=ﬂ,n——-l’ A o [A:l ]EIEI.',ﬂEJi1i=L_N

are determined by the follownng linear algebraic system

= o lle]=15]
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. B, afd i ]
wich p X p matrix A = (a;," ") o} ¢ Ji,a€l; 8€ 1;,i,j=T and prows and mn columns matrix

_ {8
B = (bi,pu)uEIhﬁEL,£=1,N,p=i),m—1,u=ﬂ,n—l where

{H,v)
ﬂﬂu o g?ﬁ (-’F:‘:yi): ﬁ:f’:ﬂu o (Iﬂyu)(a,ﬂ) . y1}_

B* 1s the transpose matrix of B and 0 is a zero matrix. The proof is omitted.

If we consider the following instead of problem P. Problem P': Find o{z,y) € X such
that

ITeolly = min T3]y

where

T2l = [ (@) () dody + Z / (W0 (2, )Pz 4 3 / (™) (4, y))dy,

pp={

then hike Theorem 8, we have
Theorem 10. If o(z,y) 15 a ssimple tnterpolation natural spline solution of Problem P’,

then
m—1ln—1
(z,9) = zitg:(:r: y)+ Y Y ety
s=1 =0 =0
where
2m—1 2n—1
, - m+n [2: — )4 (v ~ y)_|_ '
23 =2 [y~ [( —c)” = C)E“’”"l]
=55 1 n—r
+"Z_:n( (2m — 1)! V! ! 1 (2n — v — 1)!
§ el o (= (3; = afm=et
+ Z (—1)" [ s ]
e (2n — 1)! (2m — u— 1)!
and the coefficients A = [); ]T Tt = [c“”];T::ﬂ.m—l,u:O,n-—l are determined by a lnear

algebraic system

& o [¢]= 5]

with a given real number set z, matrices A = (ai;)vxwy = (9;(zi, %)), B = (b oo )N xmn =
(%, y¥), B* = BT and zero matriz 0.

The following is a simple example of the interpolation problem: Find the solution o(z, y)
of Problem P’ satisfying o(1,1) = 1,0(1,2) = 2,0(2,1) = 2,m = n = 1 in a rectangular
domain [0, 3] x [0, 3].
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By Theorem 10, the solution is

olmy) =3- (1= 2e(1-y)s + 5 (1= 242~ 9)s + 32— 2o (1-1)s
A S TR (S P SR S S

1 1 1 1
=1"‘5(‘5—1)+—E(E‘“2)++§(9‘1)+“§(!J—2)+

1 1 1 1
+§I(y =1)p — 53(&‘ = 2)4 + Ey(-"ﬁ' = 1) = ‘2‘?:!(1’ = 2y

(2= Daly= Vs + 5= Vs ly— 24 + 2z — D ly— 1)1
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