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Abstract

This paper prensents a detailed derivation and description of a new method for
solving equality constrained optimization problem. The new method is based upon
the quadratic penalty function, but uses orthogonal transformations, derived from the
Jacobian matrix of the constraints, to deal with the numerical ill-conditioning that
affects the methods of this type.

At each iteration of the new algorithm, the orthogonal search direction is determined
by a quasi-Newton method which can avoid the necessity of solving a set of equations
and the step-length is chosen by a Armijo line search. The matrix which approaches
the inverse of the projected Hessian of composite function is updated by means of the
BFGS formula from iteration to iteration. As the penalty parameter approaches zero,
the projected inverse Hessian has special structure which can guarantee us to obtain the
search direetfen'a.eeuretely even if the Hessian of composite function is ill-conditioned
in the former penalty function methods. |

§1. Introduction

We consider the problem

minimise F(z), =z & R", (1.1a)
subject to ¢{z) =0, ¢c€R™, m<n (1.1b)

where F(z) and ¢;(z)(t = 1(1)m) are all twice continuously differentiable functions of z.
The former penalty function method for solving (1.1) is minimizing the composite fanc-
tion

&(z,r) = Fz) + cTc/2r (1.2)

where ¢ ¢/2r is the quadratic penalty term and r is the penalty parameter. It.is known that
if z* is the solution of (1.1} and z*(r) is the unconstrained minimum of (1.2), then under

mild conditions [4],

,!EI:I:II [r] =&".

Thus, we will deal with the unconstrained problem

minimize®(z, r) (1.3)

in stead of (1.1}. The method we suggest for solving (1.3) will generate a sequence that
converges (as r — 0) to solution z* of the original problem {1.1).

* Received July 15, 1987.
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§2. Basic Philosophy

In order to simplify our discussion, we introduce the following notations:

g gradient of the objective functions F,

J: Jacobian of the constraints, J = {3¢;/dz,], rank(J) = m ,

£. gradient of ®(= g+ JTc/r),

Q: orthogonal matrix satisfying JQT = [UT, O], where U is upper triangular,
h: projected gradient, h = Qg,

Hy : Hessian of F,

H; : Hessian of ¢,

Hs : Hy = Hg + (1fr)ZEiHi,
=1

G : projected Hessian, G = QH 'IyQT:

B : an approximation to the inverse of projected Hesslan of ®.
If we solve {1.2) by applying Newton’s method to the equation
f=g+Jchr=0,
to pgrfnrm one step nf‘Newtoﬁ’s it;erﬁ.t.inn, we must solve the equation |
(Ho + JTJ/r)p=—f (2.1)

to determine the search direction p. The matrix Hg is generally well-behaved but for the
standard penalty function method, JTJ is of rank m and ||J¥J/r| — co as r — 0, with
singularity occuring in the limit [5], which causes difficulty for solving (2.1). This is a fatal
problem if we try to solve equation (2.1) directly. The second difficulty is that, while using
Newton’s method, we must supply a formula with which the second derivative matrices
can be evaluated, and this can be a major disincentive if F{z) and/or ¢(z) are complicated
functions of z. The third and final problem is the necessity of solving a set of equations at
each iteration. Therefore, we may need to investigate a new method for solving (2.1).

§8. The New Method
In order to devise a new method, we rewrite equation (2.1) as
(He + JTJ/r)p = —(9+ JT¢/r), | (3.1)

and impose an orthogonal transformation on JT . the transpose of the Jacobian of ¢(z)..
Then we can obtain an orthogonal matrix @ : |

or-[5

where U is upper triangular and nonsingular since J has full row rank. Then we transform
equation {3.1) using the orthogonal matrix @ :

Q(Ho + JTJI/r)QTQp = —Q(g + JTc/r),
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that s, .
Gp=—f .. (3.2)

where

6= Qs +ITImMQ =G+ | V0T G | = | Gt WU G ]

O O Gaj G2z
~ and
G = QHoQ",p=Qp.f = Qlo+ ITe/r)= | 1 YT
- hl
h=| ] = Qg

In implementation of the new algorithm, the following conclusion can be used as a
stopping criterion to terminate the algorithm.

Lemma 3.1. Let z* be a solution of (1.1). Then the last (n — m) components of
f* = f(z*) approach to zeros, t.e., h5 — 0,

Proof. Since z* 18 optimal, from the first necessary condition, we have

g* e J*TA*
’ :
where A" 18 the Lagrange multipliers at ™. Substituting ¢* with f*, we obtain
=X et fr =TT (A 4 e fr). (3.3)

Multiplying (3.3) by @*, we find that
o=t = | G locsem

_[U*(A'gc/r) [h"+Uc f'r]

(3.4)

Hence, at the solution of z*, we have zeros in the last (n—m) components of the projected
gradient f*, which justifies the use of (3.4) as a stopping criterion.
To terminate the algorithm, we use both of the following two stopping criteria

|h2(z)]| < e ' (3.5)

and
le(z)ll < e2. (3.6)

The use of (3.6) is to check whether the constraints are satisfied and to prevent the premature
termination.

The following two theorems show the crucial points of the new method compared with
the former method.

Theorem 3.1. Let E be a change in equation (3.1} and ¢ be the change sn the solution
p induced by the change E due to rounding to t-binary digits. Then |lel|/|lp|| ts unbounded
as the penalty parameler r approaches zero.
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Proof. Consider the equation
(Hp +J¥J/r+ E)(p+e)=-1.
Let A = Hy + JTJ/r. If A is nonsingular and [A~Y| - || £} < 1, then, we have!®]

22

le] 1A

"P" B k(A] “fllll

k(A) 12N
(3.7)

where k(A4) = || A||||A~%}|. Since error E is caused by rounding A = Hg + J* J/r in order to
store it to t-binary places (assume that Hs and JTJ are exact), then, if || - || denotes || - ||
or | - i, | Bl < 271 4], (3.7) becomes

el . 27tk(4)
ol = 1= 2-*k(4)

As r — 0,k(A) — oo, the bound becomes indefinitely large as k(A4) — 2t.

Theorem 38.2. Let E be a change in equation (3.2) and & be the change in the solution
g tnduced by the change E due to rounding to t-binary digits. Then ||2||/||5|| 3s bounded as
the penalty parameter gpproaches zero.

Proof. For simplicity, we assume that, in G, G2, G2; and Gag are exact. Consider the
equation

G11+UUTJ{T+E1 Gia ] h1+Uc/r ]
g = —
G2y Gag P +2) h;
and let § = [p;, P27, 2 = [El,Eng. Then we have
(Gll + UUT/?' 7 El)(ﬁl + 31] 5 Glg{ﬁg +-32) = "'—h]_ e UC/'F (3.3)
and
Ga1(p1 + i51)‘+ Gaz2(P2 + 83) = —h2 (3.9)
or '
Gaz(p2 + 82) = —he — Ga1{p1 + &1). (3.9")
Calculating {3.8) and (3.9) v_ﬁhile thinking of (3.2), we obtain
(G1: + UUT /r + E))&, + G128z = —E 151, (3.10)
G2181 + Gaogés = 0. | (3.11)
From {3.11), we have
8o = “‘GEQIGEIEI- (3.12)

Substituting (3.12}) into (3.10}, we have
(UUT [r + G1;1 + By — G12G55 G21)8y = — Eypy.
Multiplying r to the above equation, as »r — 0, we obtain

[UUT 5 TE1]§1 = *-rElﬁl | (3.13)
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which yields

X
woory el
= U0 Mooy .13
gl ~ IrEL|l
1 - k{UUT
O ooT)

If || Ey|| < 27| UUT)|/r, {3.14) becomes

leall . _27K(UUT)

o ; 3.15
Pl = T=2-tk(@DT) R

The R.H.S. of (3.15) is independent of the penalty parameter r, and UUT is nonsingular.
Hence, despite r — 0, {(3.15) is bounded. On the other hand, from Lemma 1, since hg — 0

at the solution, {3.9') becomes

Gz (P3 + &) = —~Ga1(f1 + &)

which yields!®!

|| 22| | G211 ]|
< k{Gop
N = RS N [V
KO<m< ||Gq| £ M, then
lea} M )
< —k(G . 3.16
7l = m G e

Since Ga3 is nonsingular and ||& ||/|If1 |} is bounded, }|23||/||p2]| is also bounded.
In practice, the orthogonal search direction p is obtained by using a quasi-Newton
method, i.e. § = —Bf, where B is an approximation to the inverse of .

Thus, the new algorithm may be stated as:
1. Choose an initial value of z and a fixed sequence {rk} — 0; set the intial B = I.

2. For each ri, find a local minimiser, say, z*(rx) to minimise &(z, ry). At each iteration,

the algorithm proceeds as follows:

1} compute f and J;

2) compute @ and U;

3) compute f = Qf;

4) compute p = —-Bf;

5) compute p = QT p;

8) compute z + z + tp, where ¢ is chosen to reduce ® by the Armijo line searchl’!;

7) update B by using the BFGS formulall;

- 8) repeat from 1) until ||p||/l|z|]| < £, where & is a pre-set tolerance,

3. Check whether both of the conditions ||hz| < &1 and |¢(z)|| < &3 are uatmﬁed where
1 and ez are tolerances specified by the user. If they are satisfied, then terminate the
algorithm and accept the current solution z; and ®{zy,ri). Otherwise, set ry; = ry/const,

return to step 2 to minimise &(z, riiq).
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§4. Numerical Results

In order to evaluate the new algorithm, various examples have been tested. All the
examples are chosen from the collection given by Hock and Schittkowskil® and the tests
have been performed on DEC10/20 computer. All the calculations of the test problems
are carried out using programs written in ALGOL in single precision with 27 bit mantissa,

approximately equal to 9 decimal Qigits,

In this section, only four examples are selected from the tested problems to compare the

efficiency of the new method (NM) with the former method (FM). They are identified with
the same number as in [6]. We choose const = 10%,& = 10~° and &; = €3 = 1077 in the new
algorthm.

The following information is given for each example:

(1) Ni: number of iteration,

(2} Nf: number of composite function evaluation,

(3) Ng: number of gradient vector evaluation,

(4) Ex: Ez = ||2* — %||co; £ is the solution given by [6],

(5) Ef: Ef = |F* — F|,F* = F(z*) = ®(z"), F = F(z) .
No. | Method | Ni | Nf | Ng Ex Ef
39 FM | 60 | 140 | 97 | 0.00002904 | 0.00001035
. [ NM |44 | 47 | 45 | 0.00000004 | 0.00000000
48 FM 36 | 54 | 54 | 0.00001994 | 0.00000062
NM | 26 | 29 | 27 | 0.00000004 | 0.00000000
77 M 36 | 63 | 50 | 0.00005300 | 0.00000009
NM | 35 | 42 | 36 | 0.00000058 | 0.00000011
78 FM | 41| 70 | 48 | 0.00002276 | 0.00008152
NM |20 | 38 | 26 | 0.00000098 | 0.00000044

§6. Conclusions

The solution of nonlinearly constrained optimization problems using penalty function
methods inevitably leads to serious numerical disadvantages unless appropriate precautions
are taken. Hence, the former quadratic penalty function method was considered to be
unsuitable for sﬂlvmg the equality constrained problems.

In this paper, a new algorithm which utilizes the quadratic penalty functmn method
with orthogonal transformations based on the Jacobian of the constraints shows that the
quadratic penalty function method is viable and that the deficiencies generally associated
with the former method can be overcome.

The other advantages of the new method are: |

1. For the new method, the number of evaluations of the composite function, gradient,
Jacobian and constraints vector is less than the number by using the former quadratic
penalty function method. '

2. The results given in Section 4 shows that the new method can solve the equality
constrained problem stably and accurately.

3. For the new algorithm, the computation of the search direction does not require
solving any system of linear equations, and can be expected to require much less work than
- 1m.some other methods. * ‘
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