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§1. Introduction

The coupling of finite element (FEM) and boundary element (BEM) methods has been
widely used in the engineering [1, 2]. The coupling method preserves the good features
of both FEM, such as applicability to nonhomogeneous and nonlinear problems, and BEM,
such as applicability to problems on unbounded domains. At present, there are two different
concepts for this coupling. One consists of subdividing the original domain 1 ¢ R™ into a
finite number of gubregions and using either FEM or BEM in each of them, where the latter
lies on all boundaries of the subregions. The second concept, which we will not consider, uses
BEM for the modelling of special finite element functions; see Schnack [3]. Error estimates
. for a conpling of FEM-BEM have been presented by Johnson and Nedelec [4] for a special
exterior boundary value problem with the Laplacian. Wendland [5] extended their approach
to more general equations and problems but needed a rather strong assumption, namely a
compact perturbation of the identity, for the coupling operator between FEM and BEM.
Unfortunately, this assumption is violated for many practical problems in e.g. elasticity. In
this case, Wendland required a more careful coupling of the elements instead by imposing
higher regularity of the finite elements at the coupling boundary and requiring a faster mesh
refinement of the boundary elements than of the finite elements. In all the cases cited, the
error estimates hold only for 0 < Ay, hy < hg, where h;, hy denote the parameters of mesh
width corresponding to FEM and BEM, and hg > 0 is an unknown constant. Hence in the
practical computation, it 18 very hard to determine how small k; and hs must be to ensure
that the error estimates hold. |

In this paper, we present a nmew formulation for coupling of FEM and BEM, which
preserves the coercive property of the original problem. Therefore, the strong assumption
for the coupling operator required by Wendland will no longer be needed. Furthermore, the
error estimates hold for all Ay > 0 and hy > 0. .

§2. The New Variational Formulations

Let {2° be the complement of a bounded regular domain in R? with boundary I'. We
consider the following two problems as examples.
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LA Diridhiet probiem for Polseon’s L SNUARTOE
Consider the boundary value problem:

u=0, onT, (2.1)

t 13 bounded, when |z| —+ +c0

where f has its support 1n a bounded subdomain {l of £2°. Let I'; be the boundary of {1,
in {1° and Q2 be N\ {1, (see Fig. 1). We solve the problem (2.1) by using the coupling of
FEM and BEM. Consider the equivalent system of equations:

~Auy = {, in 2, {12
*ﬁﬂg s D. iIl ﬂg,

-y = Ug, OIl I‘ﬂj

3u1 at-lg

5n = Bn =M ol L

U = 0, on P,
» i
uz is bounded, when |z{ — oo Iy
(2.2) Fig. 1

where u; = u|g,,4 = 1,2, and — denotes the outward normal derivative to ['2 = 511 (see

Flg. 1). Since ~Au=0in ﬂg,_!.?aing Green’s formula we obtain
dG(z,
u(zx) =/ (= y)u[y)da,, —f Glz,y)A(y)dsy +a, Vzen,, (2.3)
I'y aﬂ'ﬂ' | P
.' 1 ' |
where G(z,y) = —log |z — yl, = # y;n, denotes the outward unit normal to I'; = 31, at

2x
¥ € I'z, and a is a constant. By the properties of the single-layer and double-layer potentials,

we obtain the following relationship between A and ulr,:

1oy [ 9G(zv)
Eu(z] =

u(y)dsy, — / G(z,y)A(y)dsy +a VzeT,. (2.4)
r, Oong I,

Furthermore, using properties of the derivatives of the single-layer and double-layer poten-
tials [6, 7], we get '

s & Olx 9] 9G(z, )
A= /; T atu(y)ds, - fr 2 Awsy, Vael, 2.5
where p— "
Gz, y - d du(y
r, Onzan, u(y)djsy g G(z,y) g dsy, VzeT,.
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Multiplying (2.4) by a function p(z) satisfying [ uds = 0, and integrating over I'p, we

T
have 5 30 x :
-5 <u,u> +/ f (z,9) u{y)pu(z)ds,ds, + d{A, p) =0, (2.6)
2 'y /T4 3ﬂ-y |
where
b(A, ) = — f / eis, xluiateiands., (2.7)
I'y /T2 '
R f abeluleidn. (2.8)
s
Multiplying (2.5) by a function v(z) € H'/%(I;), we obtain o
1< v, A >= b(du b / / — ,y) (y)u(m]daydsz (2.9)
2 1y Py Nz

Let .
HY Q) ={ve H(O;), v=0o0nT},

I}_IJB[I‘Z] = {u e H~1/3(T,), / pds = 0},
s

% -
V= H'(Q) x H ~1/3(T3), with norm ||{v, ulf} = ||”||1 T lsl e, -

Multiplying ~Au = f by the function v € H 1(1;) and integrating over {1;, we get

a(u, v) '/; Avds, = fﬂ fvdz, Yv € I}l(ﬂl), (2.10)

a(u,l'c‘)] &= -/:[m Vu - Vuvdz.

Inserting (2.9) into (2.10), the formulation (2.10) can be rewritten as follows:
du dauvy f oG

where

1 |
a(u,u)+§ < v, A }+b(ds’ e

, Y)My)v(z)dsyds, = / fvdz,
{1-
Yo e H ). (2.11)
Combining (2.11) and {2.6), we get the following variational problem:

Find (¢, A) € V, such that

a
a({u, v} + % £ 9,43 +b(du i f / Glz,) AMy)v{z)ds,ds,
3 I3

I

= f/ fud:r, Yu € Hl(ﬁl),
{1,
1

—= < u,pu > +b(A, p) +/ / o y)u(y)#(ﬂ-'-}d%ydﬂz =0, Vu(z) € H™V/*(T).
2 r,Jr, Ony '
(2.12)
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The variational problem (2.12) can be rewritten as follows:

Find (u,A) € V, such that

2.12)°*
A(u, A; v, u) =f f(z)v(z)dz, V{v,u) €V, %12
15
where
du dv | - 1
A(u, A; v, 4) = au, v) +b[-c?.;’ Z] + b(A, u) + e v, A > —y <t p>
[ [ e wteddsyde. + | [ 222 o) u(a)dsy s,
. I"; P: an.‘l‘: | I‘: P'J aﬂ.y

For the variational problem (2.12)*, we obtain

Theorem 2.1. Suppose f € H™1((1;). Then variational problem (2.12)* has a unique
solution (u,A) € V; moreover

I(s A)llv < ClIf]-1.0,, (2.13)

where C > 0 15 a constant.

Proof. Firstly we resall that (see [8]) b(A, u) is a bounded bilinear form on H~Y2(T3) x

H~'/2(T,). Furthermore, b(A, p) is H-Y 2(I';)-elliptic, i.e., there exists a positive constant
£ such that

b(us ) 2 Il jor,, Vi€ HYAT,). (2.14)

Then it is straightforward to check that Alu, Al;u, #) is a bounded bilinear form on V x V,
L.e. there is a constant M > 0, such that

A4, A0, 6)| < M{(w, Allv li(v, 8)llv,  Y(u,2), (v, ) € V. (2.15)

Furthermore, we have

| dv dv
A(v, u; v, p) = afv,v) + bl 7o) + bluy ) 2 ol o, + Bllefi2 e,

2 ﬁ'{”””f,ﬂl + ”P”EU’Q.I‘,}: V{v,u) eV

with the constant 8* > 0, i.e.

Alv,p,0,8) 2 B lI{v, 8) I}, V(v,u)eV. (2.16)

Hence the cor-lusion follows immediately by the Lax-Milgram Theorem [9].

Suppose u(z) is the solution of the problem (2.1). Then we know that u; (z) = u(z)|g, €

* Ju
1 AL AL .
H7(f4), A anir

problem (2.12)*. By the uniqueness of the variational problem (2.12)*, we know that the
boundary value problem (2.1) is equivalent to the variational problem (2.12)*,

e g1 *(T'z). Moreover, (u;(z),);) is a solution of the variational
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2.2 Displacement problem in linear elasticity
Let u = (u;, u3)T denote the displacement field which is given by the Navier system in
the two-dimensional case: '

—u*Au— (A* +p*) grad div u = [, in (2,
u=0 onl, | (2.17)

u is bounded, when |z| — +o0

where A* > —u* < 0 are the Lamé constants, f = (f1, f2)7 has its support in a bounded
subdomain {1; of 01°, and {13 = (1° \ {1;. Now we solve the following equivalent problem

~u*Aul — (A* + p*) grad dive! = £, in Q;,
—u*Au? - (X" + p*) grad div ¥? =0, i Q,

u! =0, onT,

(2.18)
Hl - Hz, on Pg,
Nu')= Nu?) = A, on Iy,
4 is bounded, when |z| — 400
where «* = u|d{,1= 1,2,
S A LOu .
Nu) = A*( div u)n+ 2u 35 A n A Curly, (2.19)

and n denotes the outward normal on I'; = 30);. Let G(z,y) denote the fundamental
solution of the Navier system in the plane. Then we have

i * A# - s i o i
A* + 3 {lﬂg 1 XA (z-y)(z—y) }

, 2.20
drp*(A* + 2u*) lz—yl A +3pr jz-yf? (2.20)

Gz, y) =

Since —u*Au — (A* + u*) grad div u = 0 in {33, using the Betti formulation we obtain
i) f Gz ) Ay = | (T (Glmy))T wlsddsy + @, Vel (220
'y 2

where a = {a;,a2)T is a constant vector. On the boundary I'z, we havel 1l

%"(I) B /n Glz,yi Aylday - /;ﬂ(T(yl(G(-'ﬂ.y)])T udsy + a. (2.22)

Furthermore, by the behavior of the T-operator acting on the single-layer and double-layer
potentials |7, 10, 11], we have

1
5 Alz) = . (Tz) (G2, ) Ay)dsy —/F Tiz)( T() Gz, ¥)))" uly)dsy, Vz€To.
’ ’ (2.23)
The kernel in the last integral of {2.23) has a singularity which is of order 1 when z

| |z — y|?
and y are close. Hence the last integral in (2.23) must be interpreted as a finite part |7},
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Let

H () = fr () x 7(),
H'(T2) = H"(T3) x H'(T'), where ~ is a real number,

R = {p = f:;) + ﬁ(;‘:’);al,ag,ﬁ are cc-r‘stants},

H‘lm(l‘g) = {p = H‘”z(I‘g), pids =0, 1=1,2, f (—p122 + pozi)ds = 0},
. I's

I's

— 1 oy -1/2 : 2 (2 2
V= HQ) x BV with norm (o, )y = Dol o+ Nilgean

An application of the Betti formulation on domain {1, vields

W{u, v) +/ A - vds =/ f-vdz, Veve I}I(ﬂ], (2.24)
. r: i nl
where
. 2
i : 3:1.,- c?u'- 31‘.1-1 Bug Bvl 31-’2
W(u, o) = A* g . *——-—-—-—-——-—}d.
(u, v) '/‘-/;h{ v u div v+ 2u (Eamiami)ﬂ‘ (Bm2+331)(8z2+8m1) z

1=1
(2.25)
Inserting (2.23) into (2.24), and combining with (2.22), we obtain the following variational
problem:

Find {(u, A} € V, such that

W(u, v) + 1/ A - ﬂds—/ / v(z)7T Tiz)( Tiy)) Gz, y))* u(y)ds,ds,

,/1:: -/1:1 T(I](G[m,y))lfy)dsydsz /nl I vdz, VYVec Hl(ﬂl) (2.26)

-3/ Cweudst | / ()7 Gz, 4) A(y)dsyds,

—'/I: V/Ii #(2) (T ( Gz, )T u(yldsyds, =0, Vuc }}“"112(1"2).
Let
D,(u, A) =-/1: '/1: ulz)T G(z,y) My)ds,ds,,

Do, w) = = [ [ oa)" Ty (T 62, )7 uls)daydss,

< y,ﬂ::-=/ B vdz,
_ g,

1
I{u, A; v, p) = W(u, v) + Dy(A, p) + Dy u, t.‘l)-l-%{ A,u:}ﬁi(p, u)

+[ y ) Ty (Gl ) Awhdnas, - [ [ (=) (TG, y)m(y)d:;j:.
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Then we can prove the following lemma.

Lemma 2.1. I(wu, A; v, u) is a bounded bilinear form on Vx V, i.e. there ezists a
constant M > 0, such that

I(u, X v, ) < M(w, Dlivil(o, W)lv,  (w,A) (v m)eV. (2.2
Furthermore, there is a constant a > 0, such that

I{v, 4, v, ) > al|(v, W2, V(v u)eV. (2.29)

Proof. We recall that W (u, v) is a bounded bilinear form on Hl(ﬂ ) x H'(Q;) and is
H l(ﬂl)-elhptlc namely there exist two constants M; > 0 and «&; > O such that

IW(H, ”” = Ml” t"”11‘31” U”l-ﬂli Vu,ve H l{nl)
W(ﬂ ﬂ) }ﬂll'ﬂlll Re It Hl[ﬂl).
Moreover, the bilinear form D,( v, u) [7| can be rewritten as follows:

. Dg[ﬂ u) = Z/ -/I.‘ Uii(z,y) du;:y) : duim)daydam,

,7=1

where

2u* (A + u*) 1 (zi — yi)(z; — y;)
U,. ; = | 8; .+
=) = T 2e) (tos [z —y] lz — yJ? )

and D3 (v, u) is bounded on H'/2(T;) x H'/2(T';). Furthermore, we have

D(v, 9) > az| v|%/s Vee HY2(I,), as > 0.

(F3)}/R’

For the bilinear fnrm Dy(p, A), 1t is strmghtforward to check that Dl( #, A) is a bounded

bilinear form on H- 1/2(Ig) x H- 1/2(I'3) and is H- 1/2(T3)-elliptic, i.e. there exist two
constants M3 > 0 and o3 > 0 such tha.t

IDI(J‘: }')' < MB“ #”-1!2,1‘: " A”—UZ'J':! L TP S H—Uz(l‘z),
1Di(#, A) 2 aallpll2y/2r,, Ywe HYET,).

Then the conclusion follows immediately with o = min(a;, a3).
The problem (2.25) can be rewritten as follows:

Pind (4, A} € V, such that

I(u, A; v, p) = //{; J-vdz, Vv, p)e V. (2.25)"

An aﬁi)licatiﬂn of the Lax-Milgram Theorem yields:



230 HAN HOU DE

Theorem 2.2. Suppose fe€ H™ 1(91]. The variational problem (2.25)* has a unigue
solution (u, A) € V; furthermore,

oM
[ Dy < =) fll-1.0,-

Finally, we point uﬁt. that the variational problem (2.25)* is equivalent to the boundary
value problem {2.17).

§3. The Discrete Approximation of Problem (2.12)

As an example, we consider the discrete approximation of problem (2.12). Let Hj,
denote a finite dimensional subspace of H *{(),), satisfying

inf |lu—vnllia, < CihMuly4r0,, Ve H(Q0) N HM ), (3.1)
¥ 1

and let By, denote a finite dimensional subspace of I} -1/ 2(T'2) satisfying

Lf A= sall-iers € Cah3? Ay, _12r,, YAEHTVAT)nH™TUR(T,),  (3.2)
p -

where 7; > 0,72 > 0 are two integers, and C; and C; are two positive constants independent
of hy and hy. Let V, = H, x B,,. We consider the discrete problem

Find (up, Ay} € Vi, such that

(3.3
A(uhr}‘h; uh:#h) o f 'fﬂhdI, V(”hl#h) = Vh )
{1y

or

Find (u‘thh) € Vi, such that

1 duy duv,
] A T —
a{tn,vp) + 5 < Ap,Up > +b( 7 ds )

%
_/ /‘ G(I’F)Ah(y)uh(ﬂ?)dsyds:::[ fupds, Vv, € Hy ,
r,Jry  9n; il

X

(3.3)*
1

-E < Hp, Up > +b(Ah:f-‘h]

aG(z,y) P
+ ,/ f 1] un{y)pn(z)dsyds: =0, Vun € By,.
I'g v T'» aﬂﬂ

Then we have

Theorem 3.1. Suppose thai (s, A), the solution of problem (2.12), satisfiesu € H7*+1(Q,), A €
H"~Y2(T';). Then problem (3.3) has a unigue solution (un, An) € Vi, and the following
error estimate holds

CM
o = wns A= 2l < = { A lulr+ 10, + A Al 1/2rs }, (3.4)
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where C' = max{Cy, C,}.

Proof. By the coercive property of A{u, A; v, ), the existence and uniqueness of problem
(3.3) follows immediately. From (2.10) and (3.3) we obtain

A{u —up, A —=dp;on,un) =0, Vv, un) €V,
Moreover, we have
Alu—up, A~ dpsu—up, A—Ap) = Alu—up, A= Apsu—vy, A=), V(vy,pn) € V. (3.5)
On the other hand, by {2.13) we get
B b = sage = T € A gy K — g v kv 3, . (3.6)
Combining (3.8), (3.5) and {2.12), we have
M

—Up,A— A - Up, A —

I{(x — ur a)flv < 5 (,..m.)ev.. {v = v, A — pn) v
<2 inf {lu=valio.+ A - mll-1sar,)
R hll1,0, Bhil-1/2,T,

& M o |
= F{ iy, I8~ vellio +  od Pr- Ph"—m.r,}
CM ,
< ﬂ* {h;1|“!11+1-ﬂl +hg |A|T:-1f11"=}'

The last inequality follows from (3.1) and (3.2). The proof is complete.

These new variational formulations for the coupling of FEM and BEM have the following
obvious advantages. We can choose the subspaces H),, and Bj,, independently. For any
family of subspaces the discrete solution will converge to the true solution provided only

that Hy,, — H '({};) when hy — 0 and By, — H =1/2(T') when hy; — 0. For optimal error

estimate, we should take A/' = h]’.

This approach can be extended to more general equetmne and problems. This will be
discussed in a separate paper.

Finally, we should mention that recently M. Costable and E.P. Stephan [12-13] presented
another new formulation for coupling of FEM and BEM, which is symmetric, but is not
coercive, OQur formulation is coercive but it is not symmetric.

Acknowledgement. My thanks are due to Professors R.B. Kellogg and E.P. Stephan for
valuable discussions.
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