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SYMPLECTIC COLLOCATION SCHEMES FOR
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Absatract

The symplectic collocation schemes, which are based on the framework established
by Feng Kang [1], are proposed for numerical solution of Hamiltonian systems. The
sufficient and necessary conditions for various collocation schemes to be symplectic are
obtained. Some examples of symplectic collocation schemes are also given.

§1. Introduction
»

Physics is characterized by conservation laws and symmetry [2]. This point of view
suggests that the corresponding numerical method to be designed should preserve these
invariants as much as possible, so that the corresponding numerical result could exactly
reflect the essence of a real physical process. The Hamiltonian system describes a negligible
dissipative physical process which plays an important role in the dynamical system. In recent
years, numerical methods for the Hamiltonian system have received extensive attention.
Due to the special structures and properties of this system (e.g., the stable phase fiow of the
system is noncontractible and preserves symplectic structures), the mumerical are naturally
expected to be designed in such a way that these characters could be taken into full account.

For the consideration mentioned above, Feng Kang [1] proposed a new approach for the
Hamiltonian system, the symplectic numerical method, which appears to be an active and
interesting subject. Moreover, Feng and his group have systematically studied the symplectic
difference schemes in recent years (1,4, 5. = |

The spline function is one of the most useful mathematical tools in numerical analysis,
and it is connected inherently with the generalized Hamiltonian system [3]. In this paper,
we study the spline collocation method for the Hamiltonian system within the framework
established by Feng [1]. The sufficient and necessary conditions for various operator spline
collocation schemes to be symplectic are obtained.

§2. The Symplectic Collocation Scheme

Consider the canonical system of equations

dz iy
% K™ H.(z) (2.1)

* Received November 14, 1987.



Symplectic Collocation Schernes for Hamiltonian Systems 253

where z = (2. '+, 23,)F € R?", K is a given nonsingular anti-symmetric matrix of order
2n, and H(z) a Gateaux differentiable functional called Hamiltonian of the system.
The 2-form defined on R?" by

¢ wp =) kijdz; Adz; (2.2)
- 1<y

gives a natural symplectic structure on R*"*. Let g* be the stable phase flow of system (2.1).
Then g° is noncontiractible, or generally speaking, ¢* preserves the symplectic structure,
l.e.,

(9°) wi = wi. (2.3)
Let S(t) be a collocation solution for canonical equation (2.1) with knots {t;} : to < t; <
tz < ---. A one-step collocation scheme (e.g., S(t) is a spline function of degree less than

three) is said to be symplectic if the transition S(t;}) — S({t;+) from the i-th time step S(t;)
to the next (¢ + 1)-th time step S(#;41) is K-canonical for all 1. (A transition is called a
K-canonical one if it preserves symplectic structure (2.2)).

§3. Collocation Scheme Using Operator Spline of Order Two
P

Let S(t) be a second order operator spline with knots {t}, S(t) € C?,
S(t) = cipa(t) + dipalt), i <t <ty (3.1)

where ©;(¢), p2(t) is a Tchebysheff system {i.e., 1,2 satisfies the Haar condition) and
¢, d; are constants. The collocation scheme for (2.1) is

g(ti+1f2) == K'—-I.H: (S(ti-i*le])! g = 0, 1, 2, mrg _ (3.2)

In the following discussion, we denote S(t;) by S;, and S{¢;+1 72) by Siy1/2, etc.
Theorem 3.1. Collocation scheme (3.2) 1s symplectic if and only if the following equal-
sties
(a:‘ + ﬁ:)(a: - ﬁ:)I = (n’i = ﬁ;)(&-. + ﬁi)(Kanu(Si+lIﬂ))21- 1=0,1,2, - (3'3]
hold, where '

o = $(V3), of = d(1/2)/dt, fi = $(1/2), B! = dy(1/2)/dt,

¢(t) = [pa2lt;i+1)P1(t) — w1{tis1)wa(t)]/det ( :1. t;;l ) ;

0 = rleenld - ntednlelfas (),

and H,,(S;4+1/2) 15 the Hessian matriz of the function H(z).

Proof. From (3.1),
Si = c;p1{ts) + dipa(t;),

Si41 = cml(tm) + difpﬂiti+1):
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one obtains

s ti+1
§ = : g ti )¢ d y
L {{pg(t‘+1)3 m( )S +1)f et ( . " )

di = ('??1 (ti_)5i+1 — o1(ti+1)Ss)/det ( 5 A ) -

1 V2

Hence
Siv1/2 = S + BiSiv1r,  Siy12 = 0iSi + BiSiva.

In view of (3.1}, one has
E!:;S,; -+ ﬁ':;S,*.i.l = K™'H, (a;.S‘,; -+ ﬁ.:SH.l).

It follows that

dSi4+1
dS;

which is K-canonical if and only if
[(“;)2 — (ﬁi)“]f = (‘-"‘? = ,Bf](K'lff,,(S;+1fz)]2.
P |

It turns out to be {3.3), and this completes the proof.

Corollary 3.1. It is sufficient for scheme (3.2) to be symplectic that

(! + ) (a! — B) = (o + Bi){es — Bi) =0, i=0,1,:-.
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= (B — Bi K Y Hyy(Sigr1/2)) il + ai K™ Hyy(8i41/2))

(3.4)

and moreover, when (K ~'H,,) is not a scalar matrix, then (3.4) is also necessary.
Exzample 3.1. Take S(t) = cie®® + die™**(A # 0),& < t < tiy1. In this case, pu(t) =
e a(t) = e~ >t. A straightforward calculation shows that condition (3.4) is satisfied for
this case. Therefore the corresponding collocation scheme (3.2} is always symplectic.
Ezample 3.2. Take S(t) = ¢; cos{At)+d;sin(Mt) (A #£0), t; <t < ti41. A straightforward
calculation shows that condition (3.4) is satisfied in this case. Therefore the corresponding

collocation scheme (3.2) is always symplectic.

Ezample 3.3. Take §(t) = ¢; + dit,t; <t < t;yy. The corresponding collocation scheme

(3.2) is always symplectic,

The above three examples give the three basic kinds of symplectic collocation schemes

using the second order operator spline.

4. Collocation Schemes Using Operator Splines of Order Three:

for Linear Equations

Consider the linear canonical equations

dz(t)
at

= K~ Bz(t)

with the Hamiltonian H(z) = %z(t}Bz[t], where B is a constant matrix.

(4.1)
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Let S5(t) be an operator spline of order three with knots {t;}, defined by a differential
operator L(D) = (D — A, )(D — A3)(D — As). S(t) € C?, where X;(i = 1,2, 8) are constants.
Denote h; = t;; — t;, or simply h = t;,; — ;.

The collocation scheme for (4.1) is

S'(t:) = K~*BS(t:), i=0,1,2,--. (4.2)

For constants A;(z = 1,2, 3), there exist four cases: .

(I) A1 # A2 # X3 # A1, A; are real numbers, 1 = 1,2, 3,

(IT) Ay = A2 = X3, A; are real numbers, 1 = 1,2, 3,

(IIT) A; = Az, A3 is a real number, and ); are complex numbers, 1 = 1, 2,

(IV) A1 = A2 # Aa, A; are real numbers, 1 = 1, 2,3.

The corresponding operator splines will be aallid splines of class (I), (II), (III) and (IV),
respectwely

4.1. Collocation using splines of class (1)
Theorem 4.1. For splines of class (I}, collocation scheme (4.2) is symplectic if and only
; |
f' (a4 A2 — By Ads)(a—Az — B_A3)] = (a4 — B4 )(a- — B_)(K ' B)? | (4.3)
holds for 1 = 0,1,2,. .-, where
; Cag = (As = A (ePh — eMB)(1 £ hoh),
B = (As — Ar)(e**h — e}h)(1 £ e*oh).

Proof. The spline of class (I) can be expressed by
S(t) = Clﬂht 2 Cgﬂ'h:t + -‘.’:383"", s <t < ti4i,

where ¢}, ca,c3 are constants. This implies

S; = cret 4 cpettt 4 caerdti (4.4)
Sip1 = cretttitr 4 coptative 4 caetttit1 F (4.5)
S! = ciA1e* 4 codget i 4 cadgerst (4.8)
Sii1.= c1A1eM L e dpePatids o pg ygetatinen, - (4.7)

From (4.6) and (4.7), one obtains
S;c-’tatﬂl — S{_'_ Asti _ c1 A El1t;+-‘«at-+1(1 E[ll*la]h) +c2}tgﬂh’t‘+‘;"t"+1(1 _ E(l:-h)h).
From (4.4) and (4.5)

S;EA“‘""‘ - S‘__I-le-’taii - clﬂl1ii+lati+1(1 E E(ll"-’-a]ﬁ-] 4. czﬂﬁnti+lah+1(1 _ E{Ai-l:]h)_

Since Ay # Az # A3 # Ay, the coefficient matrix for ¢; and ¢5 is nonsingular. Hence

cr = [(SieM* = Sip)Az = (S]e*® — S1,1)]/[(Aa — Aq)(e*® — er1h)ehani), (4.8)
From (4.5) and (4.7),

AzSis1— Si 1 = (Aa — Ar)ege? b1 4 (Ay — Ag)cget2titr,
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From (4.4} and (4.6)
© XsS; = 8= (s — A )erertt 4 (Ag — Ag)egett.
The above two equalities give
c1 = [{(Xa8i — §])e**® — (AaSiv1 = SLL)/[(As — M) (e — M P)eMH] (4.9)
Comparing (4.8) with (4.9) yields
(a — B)S!,, — (ae™*® — Be*?)S] = (ady — BAa)Sit1 — (arze**® — fAse**?)S;

where
a=(As — Al)(c‘k‘h — M), B = (A2 - Al)(chh - :""1“].

In view of S; = K~'BS; and S;., = K~!BS;,,, one obtains
| Si+1 = FS;
with ¥ : 5, — 5,41, |
F={a—-B8)K 'B—(arz — Ara)I]"Y(ae**? — Be* ") K~ B — (arze?*? — fAze?=")]],
which 18 K-canonical if and only if
 [(adz — BAs)? — {a.l:c‘hh — Br3e*™) 2| = [{a — B)? — (ae**® — Be**P)?|(K 1 B)2.

By setting ay = a(l £ e**?), B4 = A(1 £ e**"), we get (4.3).

Theorem 4.2. The collocation scheme (4.2) using splines of class (1) 1s symplectic for
any linear cononical equations, sf and only sf the follounng equalitries hold:

A1 A2 Az =0, A1+ Az+ A5 =0. | (410)
Proof. f A; - A - A3 =0, Ay + Ay + A3 = 0, a straitforward calculation yields
@.Az —f-A3=0, a;—F; =0

It is known from Theorem 4.1 that in this case the corresponding collocation scheme (4.2}
is symplectic for any linear canonical equations (4.1).

On the other hand, Theorem 4.1 shows that the collocation scheme (4.2) is symplectic
for any linear canonical equations (4.1) if and only if the following identities hold:

(@ Az — B As){a-Az — B_A3) =0, foranyh >0,
(ay — B4+ ){a— —B_) =0, for any h > 0.

By virtue of the following Taylor expansions

tie Xa = Foin =2(Ns= X Tl — X[y — daJb+ QP (4.11)

Xy« Do =

a_dg—fB_dg=-22 1; 2 (A1 = Az)(Az — A3){As = M)At + O(R®), (4.12)
A+ Az + X

g By = D0 T LA TR e [Ny —Ag)ENg— Xy 0P O[R1), (4.13)

8
a- — B = (A2 — A1) (Aa — A1) (A2 — M)A + O(R®), (4.14)
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we have

Lo S -—ﬁ_ -','Eﬂ, a+A2-—ﬂ+A3 -',‘50

for sufficiently small A, since A; # Az # A3. Therefore, collocation scheme (4.2) is always
symplectic only if
| Et_)tg—ﬂ._lg“—"ﬂja_f.—ﬁ_,.:o, Yh > 0.

By expensions (4.12)-(4.13), the above two identities hold only if
X~ N Ay =0, Jg s £ 35 =0,

This completes the proof.

Ezampie 4.1. Theorem 4.2 shows that, for splines of class (I), the collocation scheme
(4.2) is symplectic for any canonical equations (4.1) if and only if the differential operator
L{D) takes the form | |

L(D)=D(D-X)(D+1), A#0,

1.e., the collocation spline takes the form
S(8) = c1 +cae™ +eae™™, <t <ty |

where ¢, ¢q, ca are constants.
# _
4.2. Cdllocation using splines of class (II)
By a similar argument, we have

Theorem 4.3. Collocation scheme (4.2) using splines of class (II) 1s symplectic if and
only if the follownng wdentities hold :
[(Ah +2)° — (AR — 2)22* L = [1 — 2 R2 (K1 B)2,

Corollary 4.1. The collocation scheme (4.2) using splines of class (II) is symplectic for
any linear canonical equationts (4.1) if and only if the collocation spline S (¢} is a polynomial
spline of order three, i.e., A =0, i.e.,

S(t) =¢; +dit + 882, t;, <t <t;q,

where ¢, dy, b; are constants, and S(t) € C!.
4.3. Collocation using splines of class (III)
A similar argument gives the following results:

Theorem 4.4. For the collocation splines of class (II1) assoctated with differential
operator L(D) = (D — A3)(D — A)(D — 1), the collocation scheme (4.2) is symplectic if and
only if

(@402 — Bran)(a—o2 ~ B_o1)] = . B_(K~1B)?,

where Az 1s a real number, and A =0y + 02 % 35 a complex number,

Gy = U?(_l o glah) sin_ ozh + ()43 — g‘l)(]_ - Elah) cosogh — (}‘3 = al)(g{hg—al}h + Eu;h),

P+ =.(Jta ~ o )(—1F e**)sinogh + o2(—1 +e*3%) cos ook + oa(e(P3=o1)h £ porh)
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Corollary 4.2. The collocation scheme (4.2) using splines of class (III) is symplectic
for any canonical equations {4.1) if and only if the collocation spline S(¢} takes the following

form
S(t) =c) +ea8inAt +czcosdt, A#0, t;p <ty

where ¢y, ¢2,¢3 are constants. .
4.4. Collocation using splines of class (IV)

Theorem 4.5. For the collocation splines of class (IV) associated with differential
operator L{D) = (D — As)(D — X)?, the collocation scheme {4.2) s symplectic if and only if
aro_I=p,8 (K 'B)?

where
4 = }ta(ﬂ{‘h_“h = 1]{1 + ﬂ"‘h) o A[Aa T A)[l m Ekah)h,
Bx = (eP3=2h — 1)(1 £ e**) — (A3 — A)(1 % e*2?)a.

Corollary 4.8. There does not exist a collocation spline of class (IV) such that the
corresponding collocation scheme {4.2) is symplectic for any canonical equations (4.1).

The above result suggests that the collocation splines of class (IV) are not suitable for
the Hamiltonian system in view of the symplectic method.

The collocation spline’which always gives a symplectic scheme for any linear canonical
equations will be called a symplectic spline. '

Table 1. lists the symplectic splines of order three

class Differential operator L(D) Symplectic spline
3
(0 | JI(P=-X2), M#Ara#ra#A ey + cae™ +cae™ M, A F#0
(H) (D —— A)S, A real ¢y + cot + Cgtz

|
(IIT) | (D — As){D — A)(D = A), Asreal, A complex | ¢; +cosinAt +cacosAt, A#0

-

(IV) | (D~ As){D — A)?, A5 # A real No exist

§5. Collocation Schemes Using Operator Splines of Order Three:
for nonlinear Equations

Consider nonlinear canonical equations

dz —1 : .
-d—t' = JE H,(L") : (5*1)

with nonsingular anti-symmetric matrix X of order 2n and Gateaux differentiable functional

H(z),z € R3",
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The results of the previous section show that only the splines listed in Table 1 (i.e., the
symplectic splines) among operator splines of order three are suitable for the Hamiltonian

system. For this reason, in this section we only consider symplectic splines.
Let S{t) be a symplectic spline of order three, and construct the collocation scheme for

(5.1) as follows:
Se = K~ H,(S), (5.2)
1 ” 1 .

Obviously, the above scheme reduces to scheme (4.2) in the case that H,(z) is linear.
Theorem 5.1. The collocation scheme (5.2)-(5.3) using symplectic splines of class (I)
1s always symplectic, and

H(Si+1) = H{(S:) + O{h®).
Proof. For the symplectic spline in class (I}, the following relation is valid:

(chAh — 1)(Si4, + 8) = (AshAk)(Sis1 — S;).
In view of {5.2)—(5.3), we have

95;41 __ ' B B o S; + 8ip1Y77!
= [AshAhT — (chAk — 1)K H,, ( 2 )]
S +8;
- | 1 t+1
x [ AshART + (chAk — 1)K H,, (22
which is a K-canonical transition. Therefore, the corresponding scheme (5.2)—(5.3) is sym-
plectic.
By the mean value theorem, we have
_ " Ay — ol Si+1 = S\T S+ 81N~ . 1841 — S\T -
H(Set1) —HIE] _2( 2 ) H‘( 2 ) ¥ 2( 2 ) (Hax(5)
~ S“+1 o Si s 2;\5}1}.}1 S,:+1 g .S..' T S{+1 CEE St‘
L e e e L e

+3(Sis1 = ST (Hus(8) - Hual3))(Sis1 — 5)

1 5 %
= E(Si+1 A Si)T(Hn(S] T h::(s))(Si+1 o Si)-
By noting that the scheme (5.2)-(5.3) has the first order accuracy, we get
H(S,;+1) —H(S;) —_— O(hg)

This completes the proof.
A similar argument gives the following results:
Theorem 5.2. The scheme (5.2)-(5.3) using symplectic splines in class (II) or class

(III) ss always symplectic, and
H(Si11) = H(s;) + O(h?).
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