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PROJECTIVE APPROXIMATION OF DOUBLE LIMIT POINTS
FOR NONLINEAR PROBLEMS *!)

Ma Ya-nan
( Wuhan University, Wuchang, China)

Absatract

In [2], general approximation results for the solutions in a neighborhood of a simple
limit point are given. In this paper we give projective approximation results for the
solutions in a neighborhood of a double limit point. Application of these results to a
nonlinear partial differential equation and numerical results are given.

£1. Introduction

Consider a nonlinear problem of the form
F(Au)=0 - - (1.1)

where F :.R % V — V is sufficiently smooth, and V is a Hilbert space. In 2], finite
dimensional approximation of branches of solutions of problem (1.1) in a neighborhood of
a simple limit point and a simple bifurcation point have been studied. In this paper, we
will discuss the projective approximation of branches of solutions of problem (1.1} in a
neighborhood of a double limit point { Ag,uo) of F, ie., a point (Ag,up) € R x V which
satisfies the following properties: | |

1) F(Aﬂ: uﬂ) =0 |

2) Dy F(Ag, up) is gsingular and dim Ker D, F(Ao, up) = codim Range D, F(Ag,uo) = 2;

3) DyF(Xo,u0) € Range D, F()Xo, uo). -

An outline of the paper is as follows. In Section 2, we give a local analysis of a double
limit point. In Section 3 we consider the projective approximation problem of (1.1) near the
double limit point. Using the method similar to that in [2], we obtain the error estimates
and convergence results of the solution sets. In Section 4, we apply our results to a simple
example, and give numerical results.

$2. Local Analysis of Double Limit Points

Consider the nonlinear problem
F(Mu)=u+TG(M\u)=0 | (2.1)

where T € L(V,V),and G € C"(r 2 3): Rx V — V;V is a Hilbert space.
We assume that (Mg, ) € B x V is a double limit point of F in the sense that
1) F® = F()o, up) = 0; (2.2)
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262 MA YA-NAN
2) D F? = D F(Xo,u0) =1+ TD,G® € L{V,V),—1 is an eigenvalue of TD, G with
algebraic multiplicity 2; |
3) Dy F® = DyF(Xo,u0) ¢ Range (D.F°).

Moreover, we assume that

Range (D, F°) is closed; D, F° is self-adjoint. | - (2.3)

Remark. Under the assumptions that T is compact and F is symmetric in some sense,
Raugel [5] has discussed multiple limit point problems. Here discarding the above assump-
tions, we only assume that (2.3) holds. We notice that. condition (2.3) holds if D F° is
a Fredholm operator and self-adjoint. Particularly, (2.3) holds for T compact and D, F°
self-adjoint. '

From 2) of (2.2) and the properties of self-adjoint operators, it follows that

Ker (Do F°) = Ker ((D.F°)"),” n=2,8,---.
Hence we can find @1, 02 € V, (@i, ©;) = 6;,1,7 = 1,2, such that
Ker(Dy F°) = span{e1, 2}
By the closed range th::-nrem“l , we have
Rang‘e (D F°) = Ker(D F°)={veV :(v,p) =0, 1= 1,2}.

Set
V, = Ker (D, F°), Vz= Range (D,F°).

Then V = V; + V,, and D, F? is an isomorphism of Va.
From 3) of (2.2), without loss of generality, we assume
(DA F°, 1) = (TDAG’, 1) #0.

Now we define the projective operator Q : V — V; by

2
QU e E(ur ‘Fji)pi: veV.

i=1

Then equation (2.1) is equivalent to the system

QF(A u) =0,
(X, ) | (2.4)
(I — Q)F(A,u) =0.
Given u € V, there exists a unique decomposition of the form
2
u=uﬁ+zfi@i+u: & € R, 1=1,2, veVs.
' 1=1
Setting £ = (&1, £3), the first equation of (2.4) becomes
2 ' - |
F(MEv) = QF(\uo + ) &ipi +v) =0. (2.5)

=1



Projective Approximation of Double Limit Points for Nonlinear Problems 263

Since ¥ = (10,0,0) = 0, D, F(),0, 0) = D, F°y, is an isomorphism of V5. Hence, by
the implicit function theorem, there exist 6o > 0 and a unique C" function v{}, €), for all A
and § with |A — 20| < 6, [&| < 6,4 = 1,2, such that

?(A, f, H(A, E]) — U, H(/\u,ﬂ] —-— U, —""'—(A{},O) — 0, § = 1, 2. ' (2.6)

The last equality can be obtained by differentiating the first one with respect to §.
The second equation of (2.4) now becomes

f:’(}‘: f) = (F[A: Uy + Z Eipi + IJ(A, 5)): ’p:'] =0, 7= 1,2 _ (2'7)

=1

; 3 a
Since fl('lﬂ:n) = D: 'Ef;'(“\ﬂ:ﬂ) = (TDAGO * DHFDE'_';(AOIGL "ll'-"l) = (T-D}«GO: "Fl) 7“' 0,

by the implicit function theorem, one can find a constant g > 0 (let g < 8p). As |&] <
ag,s = 1, 2, there exists a unique C" function A(€), such that

f1(A(£),€) =0, A(0) = A, 5?(0) =0, £t=1,2. (2.8)
» - | - ‘
The last equality can be obtained by differentiating the first one with respect to &;.
Setting .
9(£) = f2(A(¢), &)
we have
g(O) = (,
g , . A pof,_ , v A _ o
3—&,;(0) = (.DAFDa—é:(D) + Dy F (@1 1 3 B¢, (0)),$02) =0, =12,
8%, . g3} ' '
523 (0) = (TDAG° -5 (0) + TDuu G101, 3) = Ao,
8¢ £
9%g 3%\ .
U=TD Gﬂ O+T-DuuG0 1 EBI

351352( o 351352( ) Vit ) -

3%g %) 4

—E(D) = (TDJ,GO‘”'_E(O) -+ TDHHG wzmIM) = Cﬂ:

83 087

a2, o .

EEE(U) = -(TDHHG ri1¥1, pl)‘/(TDAGO,P],] = Al’

1
32 ' 5 | |
[D] — _(TDIH.IG P12, pl)/(T-DAGO: fpl) = By,
3&19¢2
3%

3—65(0] = ~(TDuuG%p202, 1)/ (TDAG?, p1) = C,.
pr

Assume that

Bg - AgCh > 0, (29]
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Set £ = to, &; = ta . Then
Q(Eh Eﬂ) — %fn(ﬂ"ll::l'l:"2 + 2Bpca + C"uﬂﬂ) -+ ﬂ(tg), t — 0,

Define -
H(t,0,a) = (t"%g(to,ta), o*+a®-1).

~ Then He€ C™%, and
1 2 2y 2 2
H(0,0,a) = (E(Ag.ﬂ' + 2Bgoa + Cpa®),0” + a —1).

Fi'om {2.9), there exist two distinct pairs (62, a?),1 = 1,2, such that

L
H(0,00,a]) = 0.

Moreover,

e Anﬂ'? “¥ Bﬂﬂ? 2“«?
det Dioay H(0,05,05) = et | p o9+ Cpa?  2a
i ¢ 1

= 2B,((a)? - (02)%) + 2(Ao — Co)a{al # .

Hence we may apply the implicit function theorem to the function H at each point (0, a’, a?)

for £ = 1,2, There exists a unique pair of C"~2 functions (o;(t),a:(t)),2 = 1,2, defined for
t| < to, such that

H(t,0:(t),a:(t)) =0, (2.10)
0;(0) = 0?,4;(0) = af, i=1,2.

Let
& (8} = (€1(8), &5(8)) = (tos(t), tai(t)), =1,2.

Then problem (2.1) has two C"~2 branches of solutions in the neighborhood of (Ao, t),
which are of the form '

{ Afe) = A(E(t),
ui(t) = wo + (1 + Gtz + v(N(1), £(8), i=12, | <to.

From above we have

d\;  9X d&l X dg

—y el —

dt ~ 3¢ dt  dé; dt

Using (2.8) we get

d;‘ (0)=0, i=12. (2.11)

Moreover,

d?x;  3%) (d_ej)2+2 33\ dei déj p 82 (de;)ﬂ -9 d3¢} L d3¢s
dtz  3E2\ dt 86,06, dt dt &2\ dt/ ~ 8& di? & di?’
d )
dt?

[0) — Al(ﬂ'?)g -+ 2Blﬂ'?ﬂ? -+ 01 (ﬂ?)g.
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LoD
Therefore, the graph of A;(t) can be divided into several cases as follows.
1) Bf e A1Cl < 0.
| d?), . :
If Ay > 0, then 7 (0) > 0,2 =1,2 (Fig. 1).
d? A . .
If A; <0, then e (0) <0, ¢=1,2 (Fig. 2).
2) B — A,C; > 0. |
d? \; ,

If vectors (A, By, C;) and (Aq, Bo, Cy) are linearly dependent, then 72 (0} # 0,: =

1,2.

2)‘,
When ddt; (0) # 0,2 = 1,2, the graphs of A1(t) and Ay(t) are tangent at ¢t = 0. If
d® )¢ d2 A,

di2 (0) and a5 (0) have the same sign, their graphs are as in Fig. 1 or Fig. 2. If they

have diﬂ'erent signs, their graphs are as in Fig. 3.

Remark. If Bg — ADC'.;. = 0, then problem (2.1) has only one branch of solution near
(Ao, u0). If B — AgCy < 0, the solution set of problem (2.1) near (X, ug) consists of an
1solated point {Ag, ug).

4t . ® st sl o1y
% A#
r, Al Q[‘z
. )‘"—- Ag & for
0 Ao p 0 X 0 A O 3

Fig. 1 Fig. 2 Fig. 3 Fig. 4

§3. Projective Approximation

Let us first introduce a result of [2|. Here we slightly weaken the conditions, but the
proof is the same. .

Let X,Y, Z be three Banach spaces and ® be a C” mapping (r > 2} from B x Y into Z
where B is a bounded open subset of X. We shall denote by D®(z,y) € L{X x Y;Z) the
total derivative of ® at the point (z,¥) and by D'®(z,y) € L,(X x V; Z),2 <1<, the
total derivative of ¢ where £;(X x V; Z) is the space of all I-linear mappings from X x Y
into Z. |

Lemma 1. We assume that the mapping D™® 15 bounded on all bounded subsets of
B xY. Let g be a bounded C* function from B into Y such that, jor all z € B, the following
two properties hold:

®(z, 9(z)) = 0, (3.1)
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and D,®(z, g(z)) is an isomorphism from Y onto Z with
[Dy@(z. 9(z)) " i2(Z;Y) < e | (3:2)

For each value of a parameter A > 0, let ), be a C" mapping from B X Y mnto Z such
that : |
1) lim sup [|D'®(z,y) — D'®p{z, y)|lzixxy:z) =0, {=0,1,
) {m,y}EB
2) sup || D"Pp]
(z,y)}EB
for all bounded subsets 8 C Bx Y.
Then there exist a constant kg > 0 and, for A < Ay, a unique C" mapping g, from B

into Y such that we have forall z € B

c.(xxv;z) < ¢ (c independent of h) | (3.3)

@i (z, 0n(z)) = 0. , (3.4)

Moreover, we have for all z,z* € B, and all integers m with 0 < m < r — 1 the following
error bound:

1) [|D™gn(z*) — D™g(2)| £m(x;v)

< K“:.II-":" —allx + > H %(‘I’(I’ o(=)) ~ @l 0N, o)
=0

z.(x;v) < K, (3.5)

2) sup | D" gy
ze D

where D™g;, and D™g are the mth derivatives of g, and g respectively and K > 015 a
constant independent of A.
Let us now consider the discrete problem of {2.1)

Uz + PhTG(A,IHh) =[], (A, uh] € R x Vh (3.5)

where P, is a linear projective operator from V into V,, and || P,z — z|| — O (A — 0) holds
for all z € V. V), C V is a Hilbert space of finite dimension. Define F;, : R xV — V by

Fi.(2, u) = u+ P,TG{A, u).

Let us note that we can equivalently solve equation (3.6) in R x V.
As in the previous section, equation (3.6) is equivalent to the system

Fr (A, uy) =0,
{ QFu (A, un) (3.7)
(I - Q)Fn(A, un) =0.
Set
2
Up = g + Zﬁi*ﬁ +u,, &ER'Y, wv,€Vy i=12
: 1=1
The first equation of (3.7) now becomes
2
QFn(A, uo + Z ipi +vn) = 0. (3-8)

=1
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Set £ = [‘fl: 62): and

2
Fn(A, € v) = QFp(A, uo + Z&sp.- + v).

1=1

For any bounded subset B of R X V, we assume

sup [[(Pn ~ )TD'G(A\u))j =0, §=0,1,---,i9, h—0
(A u)EDB

sup [|D"G(), u)|| < colB). ' . (3.9)
(A, u)eB

2 _
Set J(A, €) = G(A,uo + ) &wi+v(}, £)). In this section, K, C, K; and C:; (t=1,2-)

=1 -
are used to denote positive constants independent of h.

Theorem 1. Under the assumptions of (2.2}, (2.3), and (3.9) for i¢ = 1, one can find
ho, 80 > 0 such that for h < hy, there ezists o unique C" function vy(), £), which satisfies,
Jor all A, X*, & with (X — Xo| £ 6o, |A* = Xo| < 80,]&i| € 8o, = 1,2, and for any m with
0<m<r—1,

A 6 (0, 0) =0, ID"m(A 6] < K, ' (310
ID™ 003", €) = D (A, ) S K(X = X+ 3" (P = NTDU( Q). (.11

=0
where K is sndependent of A, X, €.
Proof. We intend to verify that the conditions of Lemma 1 can be satisfied for 7 and ..

Since D, (A, 0,0) is an isomorphism of V3, we may choose §; small enough such that
Do F (X, 6,0(M8)) M <exy, |A=Xo| <6, |E|<bo, i=1,2.
Furthermore,

(X, 6 0(A, §)) = FulM, £, 0(2, €) — F(A, &, v(), €)) = Q(Pa — NTJI(A, §),

DV ?}l(AI ‘fl ”[}‘: E)] - DH?(A: E: U(A! e}) = Q(‘Pﬁ = I)TDHG(}‘I Ug + Z Et'@t' + U(Al 'E))-

From (3.9) we have for A » 0 )
I"f;l(’\: §s U.(Ai ‘f))" — 0,

in which A, { satisfy |A — do| < &, |&] < &,% = 1,2. Moreover, it follows from {3.9) that
D" 7(2, §,v) and D" F(A, £, v) are bounded on any bounded sets. Hence, by Lemma 1, one
can find ho > 0 such that for h < hg, there exists a unique C” function v, (), £) that satisfies,
for all ’\JJ‘*:&' with I)‘ - Aﬂl < 45[], I-)"'I "' AIZlI < ‘501 IE!I < 60:". = 1! 2:

ID™on(3°,€) = D™o(2, ) S K (I° = A+ 31D ¢ Fnlh, &, (2, D).

t =0
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Therefore, {3.11) holds since
DE-}. £]?h(}‘r £ ”(}‘: ‘f)) = Q(Ph - I)T.Di.f(l, 'f)

(3.10) iz a direct result of Lemma 1. This completes the prnnf
Thus, the second equation of (3.7) now becomes

0,8 = (Fu(d o+ Z G+ (X €)).0s) =0, 7=1,2 (3.12)

gu=]

Theorem 2. Under the assumptions of Theorem 1, there exist constants ko, b > 0 and,
for h < hg, a unique C” function A(€) such that for all £ with |&| < ap,t = 1,2 and
C<m=<r=1, . |

falrn(€),€) =0, |s-s|li:p I D" A (M < K; (3.13)
ID™An(€) — D™ MEN < K Y |I(Pn — DT D I(A(8), &) (3.14)
1=0

where K 13 independent of £.

Proof. Since D, f; (AT;,,O} = (TD,G", 1) # 0, we can choose ap so small that for £ with
lE'll <oy, t=1,2, - - .
Dy fi(Ar(£),€) # 0.

Next

fn(A(€), &) = £ {A(€), ) — H1(A(£), €)
= (va(A(€),€) — v(A(£), &) + (Pn — I)TG(A(£), u(£)), 1)

+(AT{G(ME), vo+ 3 s + walA(6) E)) GO, w6}, o)

i=1
where

u(€) = uo '|' Z Eipi + v(A(€), €),

=1

DFA(A(€), ) — DA(ME) €) = (Dun(A(§), §), ~Do(A(€), €)
+(Pn ~ HTDG(A(E), u(€)), 1) + (PAT{DG(A(€), uo

3 o +ua(M(€), §) — DEOME), u(€)}, o1).

=]
By the assumptions of the theorem, it is easy to check that for A — 0

sup |fL(A(€),€)] =0,

|Ei]£ﬂg

sup [DFAME) ) — DA(ME) &) 0.

[éil<a,
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Furthermore, it follows from condition (3.9) that D" f! (A, €) and DT fi (A, €} are bounded
on any bounded set of R®. Hence, by Lemma 1, there exist an kg > 0 and, for A < hg, a
unique C” function Ap(£), such that for [§| € ap,i = 1,2, and for 0 < m < r - 1, (3.13)
holds. Furthermore,

|D™ A (€) = DA < €1 ) IDEfR(ME), ) < e2 D ID £ (A(€), €I,

1=0 s =({)

D™ £ (M), &) = (D™ (M(€), ) — D™o(A(€), &) + ALTD™ (G(A(£), ue
+3 &pi + (M), €)) - GA(E), u(€))) + (Pu — NTD™G(M(E), u(8)) 1),
|D™ (M€, Ol < es{ I D™un(M(€), €) ~ D™v(A(€), )

HI(B = DTD™GA(E), w(EN] + D 1D on(A(€), €) — D'o(A(€), I }

1=0
By Theorem 1 we obtain

T IDm ), O € e Y [(Ph — DTD™I(A(8), )

1=0

Hence (3.14) holds. This completes the proof.
Set gn(€) = fA(An(£), £), with g(¢) defined as in §2.

Lemma 2. Under the assumptions of Theorem 1, sf hg,a9 in Theorem 2 are chosen
small enough, then for h < ho, |&] < ag, |€]| L ap, 1 =1,2, and 0 < m < r—1, we have

=up [Dau(8)] < K, _ - (3.15)
¢i|Sao | _
1D™an(€7) = D™g(@)l < Km( 2165 ~ &1+ D (Pa = DTD'GA(E), u())  (3.16)

where Ki(t = 0,1, ---,r) are independent of £, £*.
Proof.

gn(€) — 9(£) = (Fh(lh(f]: uo + Yy &oi + vn(Mn(€), €)) — F(A(€), u(€)), iﬂz)

= (sn(W(£), &) = v(A(€), ) + (Pr — NTG(A(£), u(8))
+PT{ GO (€), vo + 3 &i + va(Mn(8), €) - D™G(A(€), u(€)) } ¢3),

D™ gn(€) — D™g(€) = (D™ vn(An(£), &) ~ D™u(A(§), €) + (Pn — )TD™G(A(£), u($))
+P5T{D"‘G(Ah(f), Ug + Z 'Ei‘ﬁ"i + '”h()lh(f]: E) - D"‘G(A(fl: “(E))}: 5‘92)!
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1D™gn(£) — D™g(€)]] < cx{l|D™vn(An(€), €) — D™o(A(€), ) |
+|(Pn — NTD™G(A(£), uw(€))]| + ID™C(An(€), w0 + ) &i0s + va(An(£), )
“D"‘G(*(E)m(f))ll} < e {lD™on (M (€), €) — D™u(A(€), O]

1=0

H{(Pa — I)TD™G(A(E), u(§))]] + c2 Z(IID‘M(E) - D'A(E)l

+[| Diun (An(£), €) — D u(A(£), )1 }-
By Theorem 2, we have
ID™ A (€) — D™AE) € K Y _N(Pn — NTD*G(A(€),u(é)).
+=0
Particularly, for all £ with |£;] € ag,7 = 1,2, we have
[An(€) — A(€)] £ esl{(Pn — DNTG(A(E), u()).

Hence, if we choose hg, &y small enough, we can get for A < ho
|Ah(€] = ADI < 60: P‘(f) e ’\ﬂl < 5‘[}: if |El| < ag, 1= 1121
in which 6p 18 as in Theorem 1. Thus by (3.11) we obtain

| D™va(An(£), €) ~ D™u(A(€), )| . _ |
< co{Pn(€) = MO+ Y NI(B — DTD'G(A(E), w(N ]

1=0
Therefore, we have for A < hg and |&| € ag,7 = 1,2,
|D™gn(€) — D™g(E)Il < cs D _ (P — NTD*G(A(€),u(€))]-
$==()
From condition (3.9} we know that {3.15) holds. Hence for h < ho,
|1 D™ gn(€%) — D™g(§)| < call€” — €l |&i] € @0, [&] £ -

It follows that (3.16) holds. This completes the proof.

Lemma 8. Under the assumptions af (2. 2] (2.3) and (3.9) for 1o = 2, there exist an
ho > 0 and for h < hg, a unique point (£3 ., €3, ) satisfying -

Dgn (€3 n €21) =0, (3.17)

1 |
€2 01+ 1€2 4] < €D [(Pn — DTD*G (o, uo) - | (3.18)
- $=0
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Proof. By Lemma 2, we have for A — 0,
”Dgh(ﬂ,ﬂ) o bg(ﬂ, 0] " — 0, ”929"(0, D) - ng(ﬂr D)" — 0.

Next,
Dg(0,0) = 0

Ao BO.'__ _ nZ2

Thus D?g(0,0) is invertible. Therefore, we can apply Lemma 1 in the following situation:
O(z,§) = Dg(€), . ®aulz,€) = Dgn(€), &(z) =0, for z € R*.
There exists a unique point (€3 1, €3 1) such that (3.17) holds and

[€1n] + |€28] < K| Dgn(0,0)].

From (3.16) we o get (3.18}. This completes the proof.
Now we set gh == gh(fl % fz »). Using the Taylor expansion and Lemma. 2, we have

|} < l9n (0, 0)| + || Dgn (O, 0)||(|E1,h| = % lfz,ﬁ” + ¢(|€1.h|2 + {€2.41°%)-
By (3.19), we have
921< 19 (0,0)] + €1 Dan (0, 0) 1

det D?g(0,0) = det (

lghl < ﬂz{ll(Ph = N)TG(Ao, uo)|| + [Z (P — I)TD*G( o, "u)ll]z}- (3-20)

Define a;funci:iun Qh. by p
(&) = gn(€) — an-
Then we have gn(£) = 0, Dgn(£2) = 0. Set
An = 8%y/0¢, Bn=0%9,/86,06, Cn=9"gy/3;.
It follows from Lemma 2 and Lemma 3 that for h — 0
1D g (£2) — D?g(0})]| = 0, Bf — AnCy > 0.
Now we can prove the following lemma.

Lemma 4. Under the assumptions of (2.2), (2.3), (2.9) and (3.9) forip = 3, one can find
“ho,to > O such that for h < ho the branches of solutions of gn(£) = 0 may be_parametrized

in the form {(r;‘1 i (2), E; n(t)) : |t] < to}, in which the C"~2 functions 511 (), Eﬁ 5 (t) satisfy

ﬂ.h(ﬁ) = fl,hl ‘52 h(U) €2 h) 1= 1:2'

Moreover, for all integers m with 0 < m < r — 3, there exists a constant K, such that

s {| 2o ELale) ~ GO + | 2 (Ein(6) = €5000)|)
m+1
K] Z (B~ DTD G(hor uo)| + oup E I(Ph - I)TE'-G(A @), w(®) }.

(3.21)
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Proof. Define the function Hj, : R? — R? by
Hp(t,o0,a) = [t_igh(fih + to, Eg_h + ta),0? +a® — 1).
Since (£ 5, £3.5) is a critical point of the function gn, we have
| 1
Hy(t,0,a) = (f (1—8)D%g, (€2 ), + sto, &3, + sta){o, a)2ds,0® +a® — 1).
0
On the other hand, we have

H(t,0,a) = (./‘;

Using Lemma 2 and 3, we have for h — 0

1
(1 — 8)D?g(sto, sta) - (0, a)®ds,0? + a® — 1) :

| D™ gn(£3 5, + sto, &3 4 + sta) — D™g(sto, sta}ff = 0, m=0,1,2,3.

This limit is uniformly convergent for (s,t,0,a) € B C R*, in which B is any given bounded
closed set. Hence for A — 0, Hj, converges uniformly to H together with its first derivative.
Moreover, |

Therefore, by choosing to small enough, we can get for [£| < fo

| D(,1G}H(t, oi(t), “i'(f'))“lI < 6y,

and it can be derived from (3.9) that D*~2H,(t,0,a) and D" 2H(t,0,a) are bounded on
any bounded set of R®. Thus by Lemma 1, there exist an hy > 0 and for h < ho, two pairs
of CT=2 functions (o4 (t), a} (¢)),2 = 1,2, such that for all ¢ with [¢t] < to,

Hi(t,ob(t),al(t)) =0, =12,
Furthermore, we have for all integers m with 0 < m <r—3 and all [t} < 2

o (oh() — o)) + [T (60 - ()| < e i h%”"(t'“‘(t]’ )]

Set
€1 n{t) = Eln + t’_"i(*): & n(t) = £2.4 + tah ().

Then {(E}h(t), &";,,,(t)) : [t] < to},§ = 1,2, are the solutions of §x(£) = 0.

The proof of (3.21) is very similar to the proof of Lemma 6 in [2] (Part I11), so it is
omitted here. This completes the proof. '

If g° = 0, then Gx(£) = gn(£), and there is no extra work to do. Let us now consider the
general case that g # 0.

Let a > 0. Denote by S{0,a) the neighborhood of (§1,£2) = (0,0), by Sp the set of
solutions of g,(¢} = O contained in 5(0,a), and by S, the set of solutions of gu(€) = 0
contained in $(0,a). Define the distance d{4, B) of two closed sets A and B in a normed
space by |

d(A, B) = max (sup inf |l ~yll, sup inf |}z - yll)-
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Similarly to the proof of Lemma 7 in [2| (Part III), we can prove

Lemma 5. Assume the hypotheses of Lemma 4 and v 2> 4. Then the set Sp 15 C7~2-
diffeomorphic to {a part of) a nondegenerate hyperbola. Moreover,

d(8h, Sn) < ey/|9p|-

Concluding all the above results, we have

Theorem 3. Under the assumpiions of (2.2),(2.3),(2.9) and r > 4, and if condition
(3.9) holds for 1o = 3, then, there exzists a neighborhood N of the point (Ao, uo) and a posstive
constant hp such that for h < hy, the set pp, of the solutions of (3.6) contained in N consists
of two C"~2 branches.

1If these two branches intersect at a point (A3, u)) € N, they can be para.metnzed in the
form {{A}(¢),u}(¢)) : [t| < to},s = 1,2, which satisfies A} (0) =A%, u} (0) = u, v = 1,2, and
moreover, forall0 < m < r - 3,

" W
i {[Zm0h ) - @) + | G () - wo))]
m+1 i
<ffm{2||(Ph—f)TD* Gorua)ll+ sup 32 1(Ps = T G000, (o)1}

(3.23)
Otherwise, the distance between the set oy and the set ¢ of solutions contained in N
may be estimated by

1
d(n, 0) < ev/Igp] + D I(Pa = NTD'G (A0, uo) |
1=0
2 1

+sup 3.3 (P —r):r G(A (&), us (DI} (3.24)

lt|<to ;3 =0

§4. A Numerical Example

Consider a two-point boundary value problem

{ v + 4n?du + cos(wt)(u — Asin(2xt))2 =0, O<t <1, (4.1)
u(0) = u(1), v'(0) = u'(1).
Let V = {u € H' u(0) = u(l1),4'(0) = v'(1)},
(v, v)v = (Vu, Vo)o,  [luflv = [|[Vullo,
where (-, )o and || - ||o are the inner product and norm in L2(0,1), and u is the gradient of

u. Thus V' 18 a Hilbert space.
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By Friedrichs’ inequality

ullo < ¢||Vullo = ¢|ully, YueV, (4.2)

[ v)o| < llulloflvllo < *llullv Jvllv, Vu,veV.

By Riess’ representation theorem, there exists a continuous linear operator 7’ : V — V such

that
(u,v)o = (Ty, v}y, Vy,veV. (4.3)

Since H*(0,1) inserts campa.ctly into L?(0, 1), it is easy to check that T is a compact

self-adjoint operator.
Define the nonlinear operator G: R x V — V by

(G(A, 4}, v) = (—47%2u — cos(xt)(u — Asin{2xt))?, v), (4.4)
where u,v € V. Thus, j)rnblem (4.1) is equivalent to
F(A\u)=u+TG(\u)=0. (4.5)

Set Ap = 1,up = sin 2x¢. It is easy to check that

1) F(Aﬂ:uO)
2) D, FO=1]+ TD,G® =I—422T € L(V, V) 1 is the double eigenvalue of 4x2T, and

Ker(D, F°) span {sin 2xt, cos 2xt};
3) D\F° =TD,G® = —8x2Tug,
(DAF,sin2nt)y #£0, (DrF° cos2xt)y = 0.

Since T is compact and self-adjoint, we know that D, FC is self-adjoint, and Range
(D F°) is closed.

Setting |
w1 =8in2t, o = coslt,

we have

Range(D F) = {veV:(v,p)v =0, i=1,2}.
From 3) we know that D) F® & Range{D, F°), and.

D_J” =TD,.G° = -2Tcosnt - I.

Hence we have
Ag = [DuuFopl'Pl: W)V
= (—2T cos t(sin 2xt)?, cos wt)y = (—2cos xt(sin 2at)3, cos 27t)o =

By = (DuyuF°p102,p2)v = (—2T cos xt sin 2t cos 27¢, cos 2xt)y
= (2 cos xt 8in 2xt cos 2x¢, cos 2wt}y = —88/105,

Co = (-DuuFDp?'Pﬂl"P‘I)V
= (—2T cos xt(cos 2xt)?, cos 2xt)y = (—2cos wt(cos(2xt)3, cos 2xt)q = 0.
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Thus we obtain
Bg e A[]O[] > 0.

Therefore, (Ao, uo) = (1, sin 2xt) is a double limit point of problem (4.1), and there exist two
smooth branches of solutions of (4.1), which are tangent or have a common tangent plane
at (AD, un].

We discretize (4.1} by the Galerkin method, in which the cardinal functions are chosen
as piecewise polynomials of order 1 and A = 1/10. Taking (0,0} as the initial point of
the continuation procedurel® we get a solution arc T';. By taking the step-length of the
continuation procedure large enough near the double limit point (A}, u}), we make the
continuation procedure go on the other branch I'; of solutions. Due to the error resulting
from discretization and computation, I'; does not iatersect I';. Their turning points appear
at A] = 1.03310 and A} = 1.09860 respectively (Fig. 4).

The author is grateful to his tutor Professor Lei Jin-gan for his direction and to Ma
Fu-ming for his helpful discussion with the author.

References

[1] K. Yosida, Functional Analysis, Springer-Verlag, 1978.

[2] F. Brezzi, . Rappaz and P. Raviart, Finite dimensional approximation of nonlinear
problems: Part I. Branches of nonsingular solutions, Numer. Math., 36 : 1 (1980), 1-25;
Part 1I. Limit points, 37 1 (1981), 1-28; Part III. Simple bifurcation points, 38 : 1
(1981), 1-30.

3] H.B. Keller, Numerical Solution of Bifurcation and Nonlinear E1genvalue Problems, Ap-
plication of Bifurcation Theory, Ed. P.H. Rabinowith, Academic Press, 1977, 359-384.

[4] Ma Fu-ming, Limit point bifurcation with multiplicity two and its finite dimensiﬂna.l

- approximation, submitted to Numerical Math. J. Chinese Uniyversity.

(5] G.Raugel, Finite dimensional approximation of bifurcation problems in presence of sym-

metries, Numer. Math., 48 : 2 (1986), 137-198.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg
	File0013.jpg
	File0014.jpg
	File0015.jpg

