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Abstract

For a certain kind of multivariate Padé approximation problems, we establish
in this paper some results about the solvability and uniqueness of its solution.
We give also the necessary and sufficient conditions for the continuity of Padé
approximation operator. The application of such approximants in finding solutions
of systems of nonlinear equations is considered, and some numerical examples are
given, in which it is shown that the Padé methods are more effective than the

Newton methods in scme cases.
#

§1. Introduction

It is well known that univariate Padé approximation{UPA} is a useful tool as rational
approximants to a specified power series and has numerous applications in the fields of
numerical analysis, theoretical physics and many other subjects(see [1],[2]). The extensions
of UPA to the bivariate and multivariate cases were first considered by Chisholm 3] and
then followed by Hughes [6],[7], Lutterodt ({9],[10], Karlsson and Wallin [8], Cuyt [5] and
others. There are numerous possibilities for the extension and generalization by requiring
the rational approximants to have certain special properties. Several different definitions for
multivariate Padé approximants(MPA) were introduced and much research work was done
in the past decade. For a general review on this subject we refer to references [2},[4],[5].

To start with, we introduce some notations. Given a positive integer n, we write Z% =
{a:a=a1,  ,an)",0i € Ly,t =1, -, n}, where Z, denote the set of all nonnegative
integers. The set Z7 is often referred to as the set of multi-indices. Given two vectors a
and b in R , we shall use the standard notations a < bif andonly if a; < b;,2 =1, -, n,

a+b = lag+bs, ,en +b]7. If a € Z%,x € R", we write |a| = 37 o, [x]| =
Vooio, %2 and x* = z' . .- g2, We also use the notations 0= [0, --,0]T, 1= [1,---, 1|7
and e; = unit vector in the ¢—th direction = {0, --,1,---,0]",

The general framework of the definition for MPA to a given function f(x) = }°_ . zn caXx®
+

consists of choosing three multi-index sets N, D) and £ in Z7 and finding two polynomials
p(x) = Eut—_‘N aaXx%, g(x)= EuED box?, such that p(x)— f(x)q{x) = Zue Z2\E eaXx”, g(0)
= 1,

In the case of UPA, the problem of {m/!); Padé approximants is to take N = {0,1, - - -,
m}, D = {0,1,---,1} and £ = {0,1,---,m + I} . However, in the multivariate case, N, D
and £ can be taken in various manners. Therefore, there may be many different definitions
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for MPA (see [3]-[10]). For the general framework (1.1) of MPA, it is difficult to give simple
and easily used conditions under which the existence and uniqueness of MPA are guaranteed.
In this paper, we choose N, D and E as follows

N={a:ac 2}, || <1}, (1.2)
D={a:a€l}, |a|<k, a#ke,i1=1,--,n} (1.3)
E={a:acZ}, |af <k}, (1.4)

where k > 2. For such N, D and E we study the existence of MPA in §2. The problem
of uniqueness is considered in §3. In §4, we investigate the problem of the contmnuity of
Padé approximation operators. In the last section, we consider the problem of application

of MPA in solving systems of nonlinear equations.

52. Existence

For N,D and E defined as in (1.2)-(1.4), let p(x) = ao + 37 ,=; @aX*, ¢(x) =
1+ Y i D\ {0} b.x*, Then equation (1.1) is equivalent to the following

ap = Co, g = Co +baCo, o€ N\ {0}, (2.1)
Y cabg+cy, =0, yEE\N. (2.2)
a+ =1
# BeD\{0}

Equations (2.1)-(2.2) are linear systems with |E| (| E| stands for the cardinality of E')
unknowns and |E| equations. Therefore it is expected to have the unique solution.

Take o = e; in (2.1), ¥ = je;, 7 = 2, -, k, in (2.2); equations (2.1)-(2.2) have the
following equations as their sub—equations

dp = Cg, ﬂ{:] = c‘ii} s & b’f}ﬂu, {23)
Z cflbi“ + c;'” =0, 17=2,---,k
att=y .
where u{f) = Gy, bf) = bte, cy] = Cye,, and t = 1,---, n. It is not hard to see that equations

(2.3) are the Padé equations for UPA (1/k — 1), with g; = f(ze;). Hence problem (1.1)
is connected closely with UPA (1/k —1),.,t = 1,---,n. Suppose equations (2.1)—(2.2) are
solvable; then (2.3) are solvable also for ¢ = 1,---,n. From the theory of the UPA [14], it
follows that

rank H;(1,k— 2,k — 2) = rank H;(2,k—1,k-2), 1=1,--,n, (2.4)
where
[ & ey e et
tamit = | ] e

l cl[':l}—l-k CE.;)_F_;:_ 1 e GE:'.I-)-l'k—J- 4

Hence relations (2.4) are necessary conditions for the solvability of (2.1)—(2.2). Now we shall
show that if cp % O, these conditions are also sufficient. In fact, from (2.2) we have

by, = —cg z cabs, 7€ D\ {0}. (2.5)

a+f=9
aX0Q, 8D
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Therefore, if bf}[t = 1,---,k— 1, ¢+ = 1,.-- n) satisfy equations (2.3), then b, can be
determined recursively by (2.5) from bi'}. Hence (2.1)-(2.2) are solvable. Thus we have
established the main part of the following theorem.

Theorem 2.1. Padé approzimation problem 1.1) is solvable if and only if one of the
following two conditions is satisfied: 1) co = 0 and the equation

Y cabgt+ec, =0, yeE\N (2.6)
a+f=
a0
peD\{0}
15 solvable. 2} ¢o # 0 and
rank H;(1,k — 2,k —2) = rank H;(2,k— 1,k - 2}, t=1,---,n. (2.7)

Proof. For cg # 0, the validity of the theorem is proved already. If co = 0, equation
(2.6) follows from (2.2). So the theorem is true.

Corollary 2.1. Let k = 2. Then Padé approximation problem (1.1} is solvable if and
only if one of the following two conditions is satisfied: 1) ¢; = 0 and

ﬂ{;-) c{ﬂj] E{z':hf}

2 =2 for (M) U) #£0, 1 # 7, 2.8
cgﬂ’ ng}l cit)ci.r} o (2.8)
i 2 : ;
c.g"” =0 for c(f] =¥ = o, (2.9)
{'l:,j} X ' :
cﬂu} = const. for any 1 such that cg") =0 and fixed 7 with c:(l” #0. (2.10)
&1
2) co # 0 and
eV =0 for V) =0, (2.11)
where (i1 ¥m) Ceyy +- ey, -
Proof. 1) Take vy = 2 e;; then (2.6) implies
T L —— (2.12)

Hence cgﬂ =0 for c&” = 0. Take v =e; + e;, 7 # j; then (2.6) implies
{18 4 () 4 {9 — o, (2.13)

If ci"c{” # 0, then (2.12) and (2.13) imply (28) If c(l"'l = cﬁ” = 0, then we have from
(2.13) that cg'” m 0. This is (2.9). If c(l') =0,c{) # 0, then (2.13) implies (2.10).

2) If co # 0, then relation (2.11) follows from (2.7).

Concerning computation of MPA, we suppose ¢y # 0; then relation (2.5) can be used to
compute by for |§| > 1. If [#] = 1, bg can be obtained by solving UPA problem (1/k—1},,.
It is well known that several efficient methods can be used. The most simple and effective
method may be Baker algorithm [2]. | s

For the application in §5, we need to compute the numerator p(x) = ag + ELI al¥) z;
For k < 4 the explicit formulas for a; are given as follows

: (s)
k=2, ﬂ"=ﬂg")—ﬂ[}c2 B =y ey

(£}’

€1
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@ _, e = cel)

k=3, ; = €4 — Ly : g 1:=1,“'ﬂ.
1 cu{:é‘) cg,]: '
i) (¢ 0)? i)? (s i
O ool 4 ol V) )
k=4, a;=c¢; —co BROEERGL & , t=1--- n.
2coc; €5 — ¢} — cacy

§3. Unigqueness of MPA

/
For any two solutions plx) _ z GoX™ / Z bsx”, and £ ' . Z a.x™/ Z bx” . of
a(x) % BeD ¢(x) fED
problem (1.1), if we always have p/q = p’/q', then we say that the solution of (1.1) is unique.
In this section, we shall give the conditions under which the uniqueness is guaranteed.
Since the uniqueness is equivalent to

(D aax®)(D bxf) = (> ahx®)(D  bsx?), xeR", (3.1)

acN feD at N ge D

we get

(aobl, —apby) + Y (aaby—albs) =0, || <k+1. (3.2)
a+G=x
aeN\{0}.8eD
By (1.1) we have p(x)q'(x) — p'(x)q(x) = 2 a¢p €ax®. Then (3.2} is always true for |y] < k.
From (2.1), refation (3.2) is equivalent to

ﬂﬂ(b; = b"l') o+ z [Cﬂ(bubb — b:tbﬁ) -+ Cﬂ(b'ﬁ = bﬁ” = ﬂ, |"]f| "_:_ k+ 1. (33}

a+f=xy
aceN\{0},B€D

From (2.2), one has co{bl —b,) + Y  atp=y ca(by —b3) =0, ~ € E\N. Subsiituting
o a#0,8€ D\ {0}
it into (3.3}, we have

& colbaby —bobs) — > calbh—8s) =0, yEE\N, (3.4)
a+t+ =+ . at+f=xy
aEN\{0},8€ D\ {0} |af[>1,8€ D\ {0}
and |
A= Y [co(bably — bybs) + ca(by — bs)] =0, |y|=k+1.  (3.5)
a+ B4

aEN\{0},8eD\ {0}

Therefore the uniqueness is equivalent to the validity of equation (3.5). To establish the
uniqueness result from (3.5), we introduce at present a simple lemma without proof.

Lemma 8.1. Letco #0, b = [by, -, b;_1]7 be any solution of the equation H;(1,k-
2,k — 2)x = 0. Then by ts tdentically equal to zero tff the matriz Hi(1,k — 2,k — 2} 15
nonsingular,

Theorem 8.1. Suppose Padé approzimation problem {1.1) has a solution; then it
13 unique 3f and only if one of the following three conditions is satisfied: 1) ¢g = 0 and
c?] =0, 2=1,--,n.2)co#0and H;(1,k— 2,k ~2) are nonsingular for 1= L --,n.
3) co # 0, there exists some ! {1 <1< n) such that Hi(1,k— 2,k — 2) 13 singular and

k
E(—.l)'i"lm:;';f_'II Z Cay & YiCey =0,  |yl=k (3.6)
$=1

ay+-ta; =
a;7%0,7=1,-,1
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Proof. 1) If ¢p = 0, then it follows from (3.5) that

A = 3 ca(bs—bs) =0, |y|=k+1. (3.7)

a+pf=x
x€N\{0},8€D\{0}

From equation (2.2), we know that bg can be any number for # € D and || = k. Hence
(3.7) is valid if and only if ¢, = 0 for || = 1.
2) Assume co # 0. Rewrite (3.5} and (2.5) as

A= ) [co(basdl — b, b8) + cay (bl — b5)] =0, [|7]=k+1. (3.8)

az+B=x
a2€N\{0},8€ D\ {0}

Substituting (2.5) into (3.8}, we have
A= Z {cﬂcﬂ l[cﬂl(bﬂ: a3 ﬂa)] + ¢o Cﬂlcﬂ:(b:u s bﬂe)}

@] tagtag=-y
al#niﬂﬂeg\{o}t

az €

= & Z . cﬂ'l[bﬂi 2 b:.'t:)

ax)+xz="Y
ay#0,az;EN\ {0}

= 2. {c0cg " [Cars (b by — Blaybas )] + 05 ' cayCas (b, — bas)}-

a1#0, ;,g;m{f a;ED\{D}

It follows from (3.4) that

A= Z Cal(b;, i bu;] = Z cﬂ cﬂlﬂﬂ: [b o bﬂa)

@)+ ag =" a,taztay="y
o150, a,EN\{u} a1#0,|ag|>1, ED\{G}
AT Z {:0 cﬂ1cﬂ=(b ﬂ!a)
@1 tagtazy=y

@1 #0,a3EN\{0},as €D\ {0}

Z cﬂl(b:.‘:: — bu:) = E Calcelcez(b:x; = bua)-

aytag==y a)ytagtazy="y
ﬂl#ﬂ.ﬂ:EN\{ﬂ} alyéﬂ,a;#ﬂ,u;ED\{D}

Using (2.5) repeatedly, we get at last

A = Z( 1) = h:+1 Z cﬂ-’t(ba,.q.; — bﬂi+1)l I'Tl = k"i' 1.

ﬂ:|,+ +ﬂ1+1—*’f
|“l+1| 1

Therefore the uniqueness is equivalent to
k

E( 1)‘-_1 6 E cﬂl (bﬂ|+1 g bﬂi+1) = U! ,'TI k+ 1 (3'9)

1=1 o1+ taip1=7

If H;(1,k— 2,k — 2} are nonsingular for t = 1,---,n, then b, — b, = 0 for |a| = 1. Hence
(3.9) is valid.

3) If there exists some ! such that Hi(1,k — 2,k — 2) is singular, then from Lemma 3.1
we have that b, — be,can vary arbitrarily. Hence equality (3.9) is valid if and only if (3.6)
is true. Then the theorem is proved.
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Corollary 8.1. Let k = 2. Then Padé approximation problem (1.1) has unique solution
if and only if one of the following three conditions is satisfied: 1) ¢¢ = 0 cgﬂ =0 3=
1,---,n, and c{;‘ﬂ =0, $,7=1-,n.2) ¢co #0 and cgﬂ £0, 1=1,--,n 3) ¢ # 0,
there exists some { (1 <! < n) such that r.:(li} = Q and

cuc(;'ﬂ = c(f)c{l".}, Yi # 1, cgcg] = c[;-]:’ 1=1,---,n. (3.10)

Proof. From Corollary 2.1 and Theorem 3.1, conclusions 1) and 2) are valid obviously.
To prove 3), taking v = €; + e;, ¢+ # 7, then from (3.6) we get the first relation of (3.10).
Taking v = 2e;, then get the second relation. On the other hand, (3.10) implies (2.11).

§4. The Continuity of Padé Operator

From the definition of MPA and (2.1)—(2.2}, MPA p(x)/q(x) of f(x) = Z cax”
aELl
depends only on ¢, with || < k. Hence we may regard the operation of Padé approximation
as a map from the space RI!Z| into the space

3 B X
R(N,D)={R: R(x)= alN a.,bg e R, xeR"},
) ( ) EﬂeDbﬁxﬂ L} g y

i.e., we define the map P as follows
»

- P:RE¥l L R(N,D):Y +— R(x) |
so that P(Y) are the Padé approximants to ¥ = [ 1T € RI!El, P is referred to as
Padé operator. From the discussion above, P may not be well defined and may have many
values.
Let Y € RIEl be given and P(Y) = p/q exist. If for any € > O and any compact
set D in R" which does not contain the zeros of ¢(x), there exists a § > 0 such that
max |P(Y)(x) — P(Y')(x)| < € provided |Y —~ Y’|| < §, then we say P is continuous at "

Suppose P is continuous at ¥ € RIEl; then a) P(Y) must exist. b} P(Y) is unique. c)
P(Y)(ze;) are continuous as UPA operators for ¢+ =1,---,n.

Now we shall show that ¢ # 0. If co = 0, from a) and b) we have ¢, = 0 for a € E, Le.,
Y =0. Let Y' = [co,¢e,, |7 # O be given such that ¢, =0 for x| <1, ||¥Y -Y'| <é.
Then by Theorem 2.1, P(Y") does not exist. This contradicts the continuity of P. Therefore
co # 0. From the theory of UPA [13], we know that c) implies that rankH;(2,k— 1, k— 2) =
k, i=1,---,n. It follows from a), b) that H;(1, k—2,k—2) are nonsingular fors = 1,---,n.
Therefore we have had the necessary conditions for P to be continuous. Now we prove that
the conditions obtained are also sufficient. Since cq # 0, and det H;{1,k — 2,k — 2) # 0,
there exists a § > O such that the same conclusions are true for Y’ provided Y’ — Y| < é.
Hence P(Y') = p'/q' is well defined. From the continuity of UPA operator and relation
(2.5), we have p'(x) — p(x), ¢'(x) —g(x), as Y —Y. Therefore the continuity 1s
valid. Hence we have

Theorem 4.1. Padé operator P is continuous at'Y 1f and only 1f co # 0, and H;(1,k—

2,k — 2) are nonsingular forz =1,---,n.

§5. Application

Let F(x) = [f1(x), f2(x) - - - fa(x)]T;x € R". We now use Padé approximants of fi(x)
to construct an iterative process for finding zeros of F. Let x* € R" be a zero of F, 1Le.,
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F(x*) =0, x!% be a starting value and p; (x'%),x)/qi(x*) x) be the Padé approximants of
fi(x) at xt*) for k > 0. Then x!*+1) is determined successively by

p;(*) xFthy =9, §=1,... n. (5.1)
Since p;(x(*),x) = f;(x*)) + EE ag.i](x(k})[zj- — :r.g-k]), we have from (5.1)
x{ftl) — (k) _ A“l(x(k}]F(x[k]), k=01, -, | (5.2)

where A(x(¥)) = («:a_,f_-j'i}(;'nc(""}):f:_l,r-= - Suppose Padé operator P is continuous at f;; then all
a}i}(x{k}) are well defined. They can be evaluated recursively by Baker’s algorithm. We

recall that the specific formulas for k = 2, 3,4 are given in §2. Let
H:(f;,x,1,k—2Fk— 2)

[ D; f; (x) fi(x)
B D2 fi(x})/2! D; fi(x) fi(x)
LOE 7 £x)/ (k= 01 D5 2filx)/(k—2)! DE-3£(x)/(k —3)! - f,—(x)J
Then u}”(x“‘}) can be expressed explicitly as
() (D) — D £ (k)Y _ fi(x®))
c )_D‘?f‘(f 2 det Hy(fi,x®) 1,k -2k —2)
D? f;(x(*)) /2! £ (¥ .‘
D} fi(x*¥)/3! D; fi(x'*)) fi{x(*))

% det

D% £,(x4))/ (k) D=2 £ (x¥))/(k — 2) DS F®)j(k—3) - fifx®)) ]
Hence A(x{*)) can be rewritten as A(x(*)) = DF(x*))—diag(f) (x¥)),- -, fo (x*))) B(x*)),
where 1 #(x) is the Fréchet—derivative of F. Under some conditions on F,
Alx) — DF(x*) as x-— x*, (5.3)
Therefore (5.2) is a kind of modified Newton method (see [11],{12]) .

Theorem 5.1. Let Co C R™ be an open set. Let f;(x) be continuous on Cy and have
required partial derivatives such that det H(f;,x,1,k—2,k—2)#0 fori,7=1,---,n, X€
Co, and la}')(xﬂ are bounded above in (.

For x{?) & C, let positive constants r,a, 8,7, h and integer m be given with the following
properties:

S (%) ={x:x-xD <r}cC, r=af(l-h), h=a®(8y)7= <1,
and let F'(x) have the properties |
(3} 1£:(x) = pi(y; %)/ q:(y, x)| < 7llx —y[|™*?, for all x,y € Cy, and i = 1, -, n.
(b) A™'(x) exists and satisfies [A~1(x)(| < 8 for all x € Cy,.

(¢) |A7 1 (x'°)}F(x(®))|| < @. Then 1) Beginning at x(%), the sequence {x\*)} generated
by (5.2) is well defined and x{*) € §,(x!%)) for all & > 0. 2) lim x'*) = x* exists, and

k— 00

& : , & m+1)%-m .
x* € 5, (x{9) and F(x*) = 0. 3) For all t > 0. {xt*) —x*| < crli';h(:+1}k—)m, Since

0 < A < 1, Padé method (5.2} is convergent with order at least m + 1.
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Proof. 1) Since A™!(x) exists for x € Cp, x* 1) is well defined for all k if xt*) € 8, (x!(9)
for all k> 0. This is valid for & = 0 and k = 1 by assumption (c). Now, if x1¥) € 8, (x(0))
for = 0,1, :-,k, then from assumption (b},

IxE+D — xB) = || — A~ x| < g FE™ < B max |f. (x(*))
— pa(x®= 1), x(8) /g, (x5 xB)]| < yBx®) — kD1, (5.4)

From this we ha.ve.by induction
Ix(E+1) _ 5 (k)| < gplmt1)t—m (5.5)
Hence
||x(k+1} _x{ﬂ}” < ||x“““*‘1} ._x(k}” it ||x“°} = xik—lln L ||x{1} — x(0) I
< aficph AP o gl il ) = ¢

and consequently x(¥+1) € 5, (x(%)).
2) From (5.5) it is easily determined that {x{*)} is a Cauchy sequence, since for &k > ¢
we have

”x[k-i—l] ___x{t} " < ah(m+1)*—m[l 4 (h[m+1]*)m + (h[m+1)*){m+1}:;1 B l

h[m+1}t-—m )
< o — K (5.6
5 1~ (hlmFll)
for sufficiently large ¢t > N (), because 0 < h < 1. Consequently, there is a himit klim x(k} =

x* € S, (x(9)). By passing to the limit as ¥ — oo in (5.6} we obtain 3). We must still show
that x* is a zero of F in S, (x(?)). Since the elements of A(x) are bounded on Cy, ||A(x])| is

bounded above in S, (x(%)). It follows from (5.2) that || F(x¥))|| < ||Agx{"))||||x”°+1} —x(¥) ||,
Hence k]im |F(x*}})|| = 0. Since F is continuous at x*, klim | F (™)l = || F(x*}| = 0.
— O} = O

Thecrem 5.1 characterizes the starting value x{°), such that beginning at %0 the
sequence {x“‘}} generated by (5.2) is convergent to a zero x* of F. Now we give a result
which characterizes the limit x* for the convergence.

Corollary 5.1. Let x* be given. F(x) have the following properties: (a) F(x) is
continuous in S, (x*), a neighbourhood of x*. (b) F{x*) = 0, F(x) # 0, forx € S {x*)\{x*}.
(c) F has Fréchet derivative DF(x*) and DF (x*) is nonsingular. (d) detH;(f;,x,1,k —
2,k—2)#0 fori,j=1,---,n, x € §,(x*), and |a;.‘}(x]| are continuous at x*. (e
| F(x) — ply,x}/q(y,x)|| < vllx —y|™*, for all x,¥ € §,(x*). Then

1) If x(9) is close enough to x* , the sequence {x'*)} generated by (5.2) is well defined.

2) lim x(*) = x*. 3) If x{¥) £ x* for k > kg, then there exist constants C' and k; such

k— o0

that
[x*+1) — x*|| < CO|x®) —x*||™t2,  for k> k.

Proof. Under the assumptions of the corollary, (5.3) holds. Then A™!(x*) exists. From
the perturbation lemma for matrices {see [11], p.7) we have that A(x) is nonsingular and
1A~ x)|| < B, forx € S, (x*) B> |A~*(x*)]}, and r; < r. Therefore, for Cp = S, (x*),
the conditions of Theorem 5.1 are satisfied for a certain set of constants r,, 8,7, h and a
suitable x{%). Then the conclusions 1) and 2) are valid from Theorem 5.1. Now we prove 3).
Let € > 0 be given. Then there exists a § > 0 under the assumptions of the corollary, such

that forx € S5(x*) || F{x)—F(x*)-DF(x")(x-x*)| < %”xw—x* I, BA~ (x)A{x*)—1I]] < g r
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Then

It follows that lim I =
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| - A @) F(x) +x - x*|| < A7 (®)[F(x) - DF(x*)(x — x*)]]
(x - x")]| < ellx —x°]|.

+ I[A7H (x)A(x") ~ T
A7 (x)F(x) +x — x*

- 0. Hence if x(¥) # x*

= x|
(k+1) _ * — A 1{~(k) (k) (k) _ 3+
o 1% XN gy AT O P+ —xt
koo xF) — x| koo (P — x*|]
Since
I+ —x®)|| ety — 2| D) — x| . l(k+1) — x(®)|
T T x| S T ] ke @ e
Therefore, there exist ¢; < 1, 0z > 1 and k; > kg, such that crl|]x“°) —x*|| < ||x“°+” s

x#)|| < o5

x(*) — x*||, for k > k;. From (5.8) it follows that
Ix(k+1] —x* " < Hl—l”x(k+z-} _x{k+1}” < qﬁgrlllx{k+1} _x{k}”m+1

< yBo of+ M) — x4 = OpelH) — x|,

Then 3} is proved.

Table 5.1
»

Starting Values | Newton | (5.2) | Starting Values | Newton | (5.2)
(5.3, 0.3) 29 5 | (34, 1.4) 15 4
(4.3, 0.2) 12 4 (3.6, 1.6) 20 5
(1.0, -1.0) 7 4 (4.0, 2.0) 42 5
(3.0, 1.0 9 4 (4.4, 2.4) 90 5
(3.2, 1.2) 11 4 (4.8, 2.8) 200 6

Table 5.2
Starting Values | Newton | (5.2) | Starting Values | Newton | (5.2)
—1.0z* overflow | 13 0.92* T 4
0.0z* overflow | 10 1.4z° 8 5
0.6z* overflow 6 | 1.8z" 13 8
0.63z* 109 6 2.3z" 20 11
0.7z" 38 6 Az 25 14

Remark 1. According to the definition of MPA, m in condition (a) of Theorem 5.1 or

condition (e) of Corollary 5.1 can be taken as k defined in {1.3)-(1.4). Hence a higher order
iterative scheme may be achieved by taking & larger. The cost is to compute high order
derivatives of F'. For k = 2, D, f; [x["‘]] and D? 1 (x{"‘)] are needed. They can be replaced

by the first and second order differences of f;(x'*¥)) in the direction e; if the derivatives are
difficult to evaluate. It should be pointed out that iterative scheme (5.2) does not relate to
the mixed partial derivatives. This is an advantage of our method compare with other the
" same order methods, such as Chebyshev method ([5],p.100), Halley method, and tangent
hyperbolas method.

2. Similarly to Newton method, the convergence of (5.2) can be guaranteed only in

some small neighborhood of x*. However, in some cases, the convergence range of (5.2) is

&
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larger than that of Newton method. The following example, in which ||x{*) — x*|| < 10715,
will do the 1llastration.

Example 5.1. Let n =2, k=2, F(x) = lexp(—z; + z2) — 0.1exp{—z; — z2) — 0.1]T.
F(x) has a simple zero x* = [~In{0.1), 0]7. The iterative times required for different
starting values are listed in Table 5.1.

Example 5.2. Let n =12, k=2, F(x) = [g1{x) — 91(1), -, ¢a (x) — gn(1}]*, where
g (x) = exp(Aix)+0.2sin{Bix)+0.1cos(Cix), A; = (Ti—1(t;))7=,, Bi = ((i)s‘—l ", Ci=

1 . : :
(1:+J'— 1);‘-‘=1, for : = 1,---,n and T, is the Chebyshev polynomial of degree n , {; =
¥ _ 1 ;
cos (‘n — )I. F(x) has a simple zero x* = [1,---,1]T. The computing results are given in
Table 5.2.

From the examples given above, we can see that for some functions Padé approxima-
tion method (5.2) has not only larger convergence range, but also faster convergence rate
compared with Newton method. Of course, method (5.2) can not always behave so well for
all functions. The next example will do the 1llustration.

Example 5.3. Let n = 5, k = 2, g;(x) = exp(A;x} + 0.23in(B;x) + 0.1cos(C;x)

. 1 % |
filx) = gi(x) —g:(1), 2=1, - ,n, where 4; = (-.i = 1);?=1, b2 Sg ((;)-’_1);":1-, =
(T-1 (60)3= - FX) = [f1(x), - -, fa(x)|T has asimple zerox* = [1, -, 1|T. The computing
results are shown in Table 5.3.

Table 5.3
Starting Values | Newton | (5.2) | Starting Values | Newton | (5.2)
0.85z"° failure | failure 1.3z* 9 9
0.92* 8 6 1.4z* fallure | failure
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