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AN IMBEDDING METHOD FOR COMPUTING
THE GENERALIZED INVERSES”*

Wang Gou-rong
(Shanghai Normal University, Shanghas, China)

Absatract

This paper deals with a sysiem of ordinary differential equations with known condi-
tions associated with a given matrix. By using analytical and computational methods,
the generalized inverses of the given matrix can be determined. Among these are the
weighted Moore-Penrosge inverse, the Moore-Penrose inverse, the Drazin inverse and
the group inverse. In particular, a new insight is provided into the finite algorithms for
computing the generalized inverse and the inverse.

. §1. Introduction

In |1, 2] the imbedding method for nonlinear matrix eigenvalue prublems and for com-
putational linear algebra are presented.
In many engineering problems we must find the generalized inverses of a given matrix.
Let A € C™*®, Throughout this paper, let M and N be positive definite matrices of
order m and n respectively. Then, there is a unique matrix X € C"*™ satisfying

AXA=A, XAX =X, (MAX)" =MAX, (NXA)'=NXA. (1.1)

This X is called the weighted Moore-Penrose inverse of A, and is denoted by X = Ay, y.
In particular, when M = I,,, N = I,,, the matrix X that satisfies (1.1) is called the Moore-
Penrose inverse of A, and is denoted by X = A%, ie., AT = AF | .

Let A € C™**", The smallest nonnegative integer & such that

rank{A*) = rank(A**1) (1.2)

is called the index of A, and is denossd by Ind(A).
Let A € C**". With Ind(A) = k and if X € C™*" is such that

AFTIX = A XAX =X, AX=XA (1.3)

then X is called the Dragin inverse of A, and is denoted by X = A4. In particular, when
Ind{A) = 1, the matrix X that satisfies [1 3) 1s called thE group inverse of A, and is denoted
by X = A#

An imbedding method for the Moore-Penrose inverse is given in [3]. In this paper,
the imbedding methods for the weighted Moore-Penrose inverse Moore-Penrose inverse, the
Drazin inverse and the group inverse are presented, and these methods have a uniform
formula.

* Received February 1, 1988,
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First, we show the generalized inverses can be characterized in terms of a limiting process.
These expressions involve the inverse of the matrix Bi(z), where B.(z) is a matrix of z.
Secondly, we show how this problem may be reduced to integrating a system of ordinary
differential equations subject to initial conditions. In particular, a new insight is provided

into a series of finite algorithms for computing the generalised inverses and the inverse i
[4-8, 9). -

§2. Generalized Inverses as a Limit

In this section, we will show how the generalized inverses A+, A}y, As and A* can be
characterized in terms of a limiting process respectively.

Theorem 2.1. Let A € C™*" rankA = r. Then

ALy = im (N 'A*MA - 2I)"'N'A*M (2.1)

2—0
where z tends to zero through negative values.
Proof. From the (M, N)-singular value decomposition theorem!”l, there exists an M-
unitary matrix U € C™*™ and an N~ l-unitary matrix V' € C™*" such that

A=U(g’ g)v* (2.2)
where
U'MU=FL., VN W=L. (2.3)
D = diag(dy,ds, --,d,), d;>0, +=1,2,---,r (2.4)
and _
ALy = NV ( Do_l g ) U*M. (2.5)
Let N |
N~y =V = ('I.J]:‘,Ug, TR (2.6)
MWy = = (u1,u2, ", 8m}, | (2.7)
then |
V=V, [*=0"1 (2.8)
and
Al i N"‘lﬁ(i:d;‘lu,-uf)M”“. (2.9)
Since
N 1TA*MA = N-lf“(i:d?u,-u;)ﬂm (2.10)

t=1



An Imbedding Method for Computing the Generalized Inverses 355

and the vectors vy, vy, -, v, form an orthogonal system in C™,

I = iu.;u:' = N-lﬁ(it};u:) N2 (2.11)
s=1

=]
therefore
NTAMA— 2l =NV (3 (& - aJuivf =2 3 vvl ) N2,
=1 i=r-41
Let A = M/2AN-1/2. then
A*A= NYI(N-1A*MA)N-Y2 (2.12)

Since A* A is symmetric and has nonnegative eigenvalues, N ' A* M A has nonnegative eigen-
values too. The matrix N1 A*MA — 2] with 2z < 0 is therefore nonsingular. Its inverse

18
n

(NIA*MA-21) = N”z(i(d? —2) " tyuf — ) z“luiu:)Nlﬁ,
1=1 t=r+1

as is easily verified. Next, form

r

(N"'A*MA— 2I)"'N~' 4" M = N-lfﬂ(Z(d,-/(d? — 2))viv} ) M2,

£
t=1

Now, we take the limit and see that

lim (N A*MA - 2I)" !N~ 4*M = N-lfz(zci;‘u.fu:)w? =5
t1=1

Corollary 2.1. Let A € C™*" then

At = lim (A" 4 - 21)7* A (2.13)

where z tends to zero through negative values.

Theorem 2.2. Let A € C™*® with Ind(A) = k. Then

Ag= lim (AFH -z}t AF (2.14)

()

where z tends to zero through negative values.
Proof. From the theorem of the canonical form representation for A and Ay [3', there
exists a nonsingular matrix P such that

A=P(g 1,‘",3,)19-1 (2.15)

where C is nonsingular and N is nilpotent of index k, l.e.,

N% =0 (2.16)
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and

Ag= P( 8 ) Pl (2.17)

From (2.15), (2.16),

Ak-i'l i EII P( Gk+1 — E-I O )P-—I‘

O —z1

Since C is nonsingular, C**! is also nonsingular, and z tends to gero through negative
values, C*+! — 2] is also nonsingular. Then

(A¥+! —2)"'A" =P ( PP g S & ) Pt

O 0

Naw, we take the limit and see that

lim (A*t! — 2])"'A* = P C~* 0 \p1. 4,
g-+0 0 O J

,
Corollary 2.2 Let A € C™*™ with Ind(A4) = 1. Then

A* = lim (A% - 2])7'A. (2.18)

Let A € C™*" be nonsingular, then Ind(A4) = 0,

A_"l = lim (A — 21}~ ' (2.19)

5~

§8. Imbedding Methods for Computing the Generalized Inverses

In order to find the generalized inverses, from (2.1), (2.13), (2.14) and (2.18), we must
find the inverse of the matrix Be(z), where B (z) is an n x n matrix of 2.

N-'A*MA-zI, t=1,

A*A -zl t= 2,
Be(2) = (b)) = { AR+ -zl t =3, (3.1)
A% - 2], b= 4,
A-—zI, t = 5.
Let .
Fy(z) = adj Bu(2) = (BY), a:(2) = det Bi(2). (3.2)

where adj B;(2) is the adjoint of the matrix B, (z) whose elements B};} are the cofactors of
the j-th row and s-th column element of B, (2). Then |

(Bi(2))™! = Fifz)/g:(2)- (3.3)
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Theorem 3.1. Let Fi(z) and gi(2z) satisfy (3.2). Then Fy(z) and g.(2z) satssfy the
follounng ordsnary differentsal equations:

dF, ~F, tr (F}) + F?

o e : (3-4)
% = - tr (Ft). (3'5)

Proof. Premultiplying both sides of (3.3) by the matrix B; and then postmultiplying
both sides by det B;, we get
Idet By, = B;ad) B, (3.6)

where [ is a unit matrix. By postmultiplying both sides of (3.3) by B; det B;, we have
Idet By = (adj B,)B;. (3.7)

Differentiate both sides of (3.6) with respect to the parameter z:

(B:)sad) B: + B¢(adj B,), = I(det B,),. (3.8)
Premultiply both sides of (3.8) by adj B;:
 (adj B)(B:)sadj By + (adj B)B:(adj B,), = (adj B:)I(det B;),. {3.9)

By making use of (3.7) in the second term of (3.9), we obtain
(adj B;)(B,).adj B; + det B,(adj B;), = (adj B:)(det B,),. (3.10)
Since det B, is a scalar, form (3.10) we find
(adj B.). = ((adj B:)(det B:), — (adj B,)(B:):{adj B;))/det B,. (3.11)

Then differentiating det B; with respect to z, we obtain

n ()
z B(det Bt) dbg:’

(det B:), = ; (3.12)
t, =1 3b£;) dz
However, ( \
d{det Bt (t)
i =55 (3.13)
i3
and B
¢
i 3.14
- - (5.14
Substituting (3.13) and (3.14) into {3.12) gives
(det B,) —Zn:B;”dbg) ——iﬂ(t)—-t (F) (3.15)
| ) ;-i=1 " dz i=1 "o i . '.
B By substituting (3.14) and (3.15) into the right hand side of (3.11), we have
(adj B:). = ({adj B.)(— tr (F:)) + {(adj B;)?)/det B:. (3.16)
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' By substituting (3.2) into (3.16) and (3.15}, we obtain (3.4) and (3.8) immediately.

For a value of z suitably less than zero, z = 2, we can determine the determinant and
the adjoint of the matrix By(2z) accurately by , e.g., Gaussian elimination. This provides
initial conditions at z = zp for the differential equations in (3.4)—(3.5} which can now be
integrated numerically with z going from 2, toward zero.

For convenience, denote

Aen = AQ)s AT = Ay, Ad= Ay, A¥ = A, AT = Ags), (3.17)

and if A € C™*", let .
Dy=N"1'A*M, D;=A", (3.18)
and if A € C"*", Ind(A) = £k, let
Ds=A* Dy=A, Ds=1I (3.19)
Then, with 2z close to zero, (Fe(2z)/g:(z)) D¢ yields an approximation to A().
Let us summarize this in the form of a theorem.

Theorem 8.2. Let the matriz F, and the scalar g; be determined by the differential
equations

g dF, _F?-Fw(R) (3.4)
dz gt
d
-tf-;t = — tr (Fy) (3.5)
and the instsal condstions
Fy(20) = adj (DA — 201), (3.20)
g:(zo) = det (DA — 2p1) (3.21)

where zg < 0, |20} < 11‘1-__—]‘.;_1 |z]; S = {i/2 # O is the eigenvalue of D;A}. By integraiing this
system from zg to z = 0 and forming

(Fe(2)/ge(2)) Dy t=1,2,3,4,5 (3.22)

we obtain, in the limit, Ay).

§4. New Insight for the Finite Algorithms

A series of the finite algorithms for computing the generalized inverses and the inverses
are given in [4-6, 9]. In this section, a new insight for the finite algorithms is presented.

Theorem 4.1. If A € C™%", let Ay = Afyyn, Az = At and
D, = N"'A'M, D,=A*; (3.18)
if A€ C™*" with Ind(A) = k, let Ajz) = Aq, Alg) = A%, As) = A7" and

Ds=A*, Dy=A, Dg=1I (3.19)
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and let
rankD; =r<n, t=1,2,3,4,; rankDs=n (4.1)
and
Fi(2) = adj (DyA — 21} = ()"~ (F{"am2 4 ... 4 W 54 RO, (4.2)
9:(z) = det (DA ~ 2I) = (=1)"(g{"s" + gMan-1 4 ... 4 gV - (43)
where FF},FQS‘], " ,F.w are constant n X n matrices and gg} =1, g;{lt}, e gs,” are scalars.
Then
A{t) = (--F,!”fg'{,t))ﬂh t=12,.--,8. (4'4)
Proof. From (2.1), (2.13), (2.14), (2.18), (4.2) and (4.3), we have
(Ded - 2I)7! = Fy{2)/g.(2). (4.5)
Hence

F92n 14 F® 24 F,i”))D
-

A t} = HIH(DtA“Z.n_IDt = lim { —
(¢) g—0 ( ( gg}zn + ggﬂzn-l S T g!;”

z=+0

where z <.0. ff g!f} # 0, then
Ag) = (-Fl) /o) D,

Next, consider that g.{f] = 0 but gf:_], 1 # 0. Since the above limit exists, according to

Theorems 2.1, 2.2 and Corollaries 2.1, 2.2, we must have

Fip, =0
and then
A{t) = -{Fr{:ﬂlfgs-j-l)ﬂi'
We know
rank(Dz A) = rank(A* A) = rankA* = rankD, = r.
Similarly,

rank(D; A) = rank(N "1 A*MA) = ra.nk(Nlﬁ(N'lA*MA)N"lﬁ]
= rank((M/2AN-1/2)*(M'/2AN-1/2)) = rank(M/2AN-1/2)
= rankA = rankD; = r.
Since Ind(A) = k,
rank{D3A) = rank(A**1) = rank(A*) = rankD; = r,
rank(Dy 4) = rank(A?) = rank(A) = rankD, =,
rank(Ds A) = rank(A) = rankDs = n,

the number of the nonzero eigenvalues of.D.-,A should be r; we assume z;,25,---,2, are
different from sero and 2,4; = 2,05 = - = 2. = 0. Since g:(z) is the characteristic
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polynomial of D, A, according to Vieta’s relations between the roots and coeflicients of a
polynomial, we have

) 20, gi-i)-l = a2l = (4.6)
Therefore |
Ay = (~ F(”/g{”)
Theorem 4.2. The guantiiies Fl( },ggtJ,F (”, F,-[ ),g( } are determined by the
recurrence relations
F¥) = D,AFY + gV, a4 (4.7)
= Ay dly T Ty b T L
gl = —(i+1)7! tr (D AFY)), (4.8)
The snitral condstions are
FiY =1, (4.9)
gt = — tr (D, A). (4.10)

Proof. From (4.5) we have
(Fl(t}z“"l+*--+F,£ﬂlz+F,£”)(D;A—zI) — (=" +g{ L L) 2+ g\ 1. (4.11)
From Theorem 4.1,”we have

gy =-=gl!=0 and F_r!t]Dt=U: g=r+1,--,n

so that
D,AFY) =F*'D,A=0, j=r+1,

By comparing the identical power of z on both sides of (4. 11) we see that (4.7) holds.
It 18 also true that

FY) = DAFY 4+ 0 (4.12)
and
' FO,=F") =...= F® = 0. (4.13)

To obtain (4.8), from {3.5) we have
(-1)" (nz"_l + (n— l)g{ ) .n—-2 -+ (n - r)g{ ) yn— r—l)
= — (1)1 (2" tr (F}”) foot 2 b (B 4271 e (FY)).

Equating coefficients of the like power of z, we see that
(n—i)gl) = & (F)).
Now take the trace of both sides of (4.7) to obtain
tr (7, +1) = tr (DtAFim) + ng}”.

It fnllnﬁa that

91{-?1 = _...(1;_|. 1]*1 tr (DtAF(tl)

which completes the proof.
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§5. Examples

Example 1. Let

X (
Then

2 ~1 -2 8 12 -2
—Ta -1 4% — —1 4= o
e (4T ) owau= (4 2 L) vaenan (2 2),
-2 -2 (1)
-6 -12

1
0
1

O = O
e’
<
H
,...-—-\\

PV g Vo qg pO o (

) 1 0 2
AII’N=(_F2“){9£!I})N"1A M=1f3( 0 3 ﬂ)'

Example 2. Let
Then

F1(2)=I= giz}':_zl FZEZ]:(_DI —?1)'952]': :

i 1 0 1
FY =0, g =0, a*=(-F{"/{")4 =(o 1 o)'

Exaﬁlple 3. Let

1 01 0 O
0 1 0 o .
A= o o o 1 | Ind(A) = 2.
O 0 0 0
Then
1 02 0 0O . 1 0.3 0 0O
0 1 0 0 0 1 0 0
- 3
=1 b a ottt *=|p 0 0 0}’
0O 0 0 0 O O 0 0
-1 03 0 0
3) 3 3 0 -1 0 © 3
Fl( e :gi)=-21 FEI}= 0 O -2 0 15?%}::
' 0 O 0 =2
0 0 0 0O 1 -01 0 O
3 O 0 0 O a a 3 0 1 00
FEE)= 0 0 1 0O lg:[il=ol Ad=(_F2( ]/gg}]A:z: 0 0 0O 0
0 0 0 1 0 0 C O
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Example 4. Let

Then

8
1
16
-7 8 3
FW—1 ¢®=—10, F9=| 0 -9 o |,g"=9,
6 16 —4

6 0 -3 1 -6 1
FO9—-| 0o 0o o |,g=0 a*=(-FY/"NAa=(1/90 9o 0|,
2 —12 2

-6 0 3 2
1 1
+=(23)
be nonsingular. Then

Example 5. Let
ROt 0=t B (5 ), A=

| . 0 1
K9 0, =0, 4= =am (2 4).
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