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Abstract

We present a non-conforming domain decomposition technique for solving elliptic
problems with the finite element method. Functions in the finite element space asso-
ciated with this method may be discontinuous on the boundary of subdomains. The
sizes of the finite meshes, the kinds of elements and the kinds of interpolation func-
tions may be different in different subdomains. So, this method i= more convenient and
more efficient than the conforming domain decomposition method. We prove that the
solution obtained by this method has the same convergence rate as by the conforming
method, and both the condition number and the order of the capacitance matrix are
much lower than those in the conforming case.

§1. Introduction

Along with the development of the parallel computer in recent years, there has been a
growing interest in methods based on domain decomposition for the numerical solution of
elliptic partial differential equations. The key idea of this method is that the domain of
the problem is decomposed into smaller subdomains, and then a computer is used to solve
the problem on each subdomain. This is an efficient method for solving the big problem of
elliptic partial differential equations on the parallel computer.

Up to now, there are only conforming finite elements with domain decomposition meth-
ods, with which the function of the finite element space must be compatible on the whole
domain of the problem. However, it will be more convenient and more efficient to adopt
different sizes of meshes and different kinds of shape functions in different subdomains when
solving practical problems in science and engineering. But this is impossible for conforming
finite elements.

The aim of this paper ig to put forward a non-conforming domain decomposition for
elliptic problems. This method needs no compatibility on the boundary of subdomains, that
is to say, the function of the finite element space may be discontinuous on the boundary
of subdomains. With this property we can use different sizes of meshes, different kinds of
elements in different subdomains. We will prove that the convergence rate of the solution
obtained by this method is the same as by the conforming method; moreover, the condition
number and the order of the capacitance matrix are much lower than in the conforming
case. In this paper, we only consider the method itaelf as well as the error and the condition
number estimates. Solution by this method of the algebraic system of equations, which
arises from the discretization of elliptic equations, will be discussed in another paper.

In Section2, we will introduce the decomposition of the domain and the construction
of the finite element space. Section 3 contains the non-conforming method and the matrix
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representation. The error estimate of the energy norm will be obtained in Section 4. Finally,
in Section 5 the condition number of the capacitance matrix will be given.

§2. The Decomposition of the Domain and Finite Element Space

For simplicity, we only consider the Dirichlet problem for the Poisson equation

—Au=f 1l
(2.1)
u=0 on ofl

We suppose that the domain {1 is a polygon.

We first decompose the domain {2 into subdomains {;; then we subdivide the subdomain
{1; and its boundary into finite elements.

More precisely, we shall begin with the following assumption with regard to {l.

Al: {1 is a polygonal domain.

A2: For each d,d > 0, as a parameter, the domain {1 is decomposed into quasi-uniform
subdomains {3;(¢ = 1,2,---,n) with size d. By this we mean that there exisis a positive
constant ¢ independent of d such that each subdomain {}; contains a ball of diameter.cd and
is contained in ball of diameter d.

A3: For each parameter h, 0 < h < d, the subdomain {); is subdivided into quasi-uniform
finite elements with size k. The meaning of this assumption is as above. -

Let 2% be the union set of all elements in (;, and (" = U 1,

A4: Let T’ be the union set of all boundaries of the subdcr;‘la.ins, that is ' = U3f};. For

each H,0 < h < H < d,T is subdivided into quasi-uniform line segments with size H. Its
meaning is similar to A2. The vertices of {}; must be the vertices of elements. Let ' be
the union set of all line segments in I'.

We always suppose that 0 < h < H < d and assume the asymptotic behavior

_h _
lim 7 =0 2

where A = max(h;).
$

Completing the decomposition of the domain, we now construct the space of the finite
elements. We make the following supposition:

Let S, (12;) be the space of piecewise m-th polynomial functions which are continuously
defined in subdomain ﬂ:“ and vanish on 91 N d{l;.

Let S2(2) be the space of functions defined in Q% = l,lﬂ:“, which are continuous and
1

piecewise m-th polynomials in ﬂf“' and vanish on 3{1. We emphasize that the functions
SP (1) are only continuous in {}; but may be discontinuous on {1.

Let Sz (') be the space of piecewise n-th polynomial functions continuously defined on
2 and vanishing on 81. Sy (81);) is the space of piecewise n-th polynomial functions
continuously defined on I'¥ M 81); and vanishing on 31} N 91);.

We define the finite element space Sy y as follows:

Shxr C 820 x Sg(T), (v, ) € Shxy is and only if (v, ) € §)(Q) x Sy(T) and u= ¢
on the nodes emerging during subdividing the subdomain {1; into elements.

Space Spx g is a subspace of Sy (1) X Sp(T'). It can be easily seen that S, (') = (el(u, p) €
Shx H ] | |
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§3. The Method and Matrix Representation

We introduce the functional

J(u) = Z {%(?u, Vu)a, — (f, u’)ﬂi}l (3.1)

&+

which is defined on H(1) = H'(Q;) @ H'(Q2) @ --- & H'(Q,,), where the inner product

(u, v]q, =/; uvdz.

The finite element problem associated to problem (2.1) is: Find u” € S such that

By ... : h
J(u*) = min J(u"),

where § = (u|3p € Sy (T), (4, ¢} € Snxg). This problem is equivalent to: Find (uh, o) €
Shx s such that

Z[(Vuh, Vo)a, — (fiv)a,;} =0, Y(v,%) € Shxu. (3.2)

»

We have two ways to carry out the non-conforming domain decomposition method:

(1} Compute the stiffness matrix on each subdomain, get the total stiffness matrix by
assembling, and solve the problem by using CGM on the whole domain {1. It can be parallelly
computed; see [1].

(2) Compute the capacitance matrix on subdomains, which is the boundary stiffness
matrix of subdomains, by using the direct method, and minimize the functional (3.1) for
inner variables of each subdomain. Use the iterative methods to seek the unknowns on
the boundary of subdomain; then compute the inner unknowns of each subdomain by the
boundary variables.

The second way of solving the problem is similar to the substructure method. The
main difference lies in the capacitance metrix. Now, we discuss computation the stiffness
matrix. We consider the basic functions of the following form: (u;;) is the set of basic
functions of space S, ((;) , and (i,;) is the set of basic functions of space Sk, (). Using
those basic functions, we can obtain the matrix representation of functional J;(u), where

2] = %{Vu, Puda, —(F)a., Mt

Ji(w) = (U7, X]) ( ¥ o ) ( > ) —(ur,xn ( k ) (3.3)

where vector variable U; (the values of u at the nodes of (2;) and X; (the values of ¢ at the
nodes of 3{);} correspond to inner variables of {2. and boundary variables respectively. As
on the nodes of 3(;, we have u = p, where ¢ € Sy (T') with (u,0) € Spxm, v|ag, must be
the hnear combination of basis (i), ¢ = (41, iz - - - pii,)Y:, where Y; = (Yii, viz i )7,
so we have X; = L;Y;, where L; is a rectangular matrix. Representing X, in (3.3) by
X; = L;Y;, we have

R e A; B; L; U; — fi
Ji(u)-E(U"K)((B;Li}’ L:C,L, ) ( Yl )_(U;'lYi)(Lfg‘_ ): (3'4)
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A; B, L;
(B:L:): LTC:L;

is the subdomain stiffness matrix of algebraic system (3.2}; the total stiffness matrix 1s
obtained by assembling.
Minimizing (3.4) about variables U;, we have

where the matrix

AU + B;LiY; — fi =0, U; = A7Y(—B:LY; + fi), (3.5)
Substituting (3.5) into (3.4}, we get the energy representation on the boundary as

LY L{(Ci - B} AiB) LY — Y7 Lf (s = BI A7 £). (3.6)

LI(C; — BT A; B;) L; is the boundary stiffness matrix. We obtain the capacitance matrix by
assembling.

Algorithm.

(1) According to L;, A;, B;, C;, and vectors g, f;, compute matrix L] (C; — B} A;B;) L,
and vector LT (g; — B! Al f;).

(2) Using the iterative method, solve the equation CY = g, where Y obtained by assem-
bling Y; is the unknowh on T, and C is the capacitance matrix.

(3) Compute the inner unknown U; of {); by equations (3.5).

The algorithm can be done in parallel.

§4 The Convergence Theorem

The aim of this section is to give the error estimate of the energy norm.

Let # be the projection operator of H}{1) onto S, = (u|(u,p) € Saxs), ® be the
projection operator of H2({2) onto S2(Q2) and 7 be the projection operator of U H/?(3;)
L

onto Sg(I'). With d as in A. 2 (roughly the diameter of {);), we define the weighted norm
on H'/2(30);) by -

ojson, = ([ [ L= autayanty) + d M puon,) s 0

|z ~ y|?

where s is the curvilinear length along 9(l;.
For simplicity, we make the following assumption in this section and Section 5:

my = m < n, h{'—"—-h, g me ] B Mg

Lemma 1. There are two posstive constants cy and cz, independent of h, H, and d, such
that for any (v,¥) € Shxx,

c1|¥lo.20; < lv|o,00, < czl¥lo,sq; (4.2)

and
c1l¥]1/2,00; < |v|1/2,00, £ Cz|¥lis2,80;- (4.3)
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Proof. Noting that v|sq, is the m-th interpolating polynomial function and using the
inverse inequality, we have

¥1/2,00, < [9li/2.00, + |¥ — vli/2.00, < lvliz,00, + ch™ 2|0 41 00,
< |vlijz.00; + c(h/HY™ 12 |Yly 2,00,

By assumption (2.2) we can let c(h/H)™+1/2 < %, 80

[]1/2,00, < 2|v|i/2,00;;
on the other hand,
vl172,60, € Wli2,80; + v — $liz.00, < (1+ c(h/ff)m“ﬁ)liﬁluz,ﬂm < ¢|¥|1/2,80;-
This completes the proof of (4.3). (4.2) can be proved in the same way.

Lemma 2. If ve SP() and vanishes at all snterior nodes of O, then

ﬂlh*1|”|g,an., 5 I“ﬁ,ank < ezh™|v]o,a0,, (4.4)

where ¢y and c; are constanis independent of h, H and d, and

# I"ﬁ,am = (Vv, Vv)an, = Vv - Vuds.
Ml

As for Lemma 2, see [2].

Theorem 1. There 13 a constant ¢ independent of h, H and d, such that

Ju — u”]|n < ¢{h"’¢z l"ﬁ:ﬂ.&ﬂ; + hlﬂHnH\/Z I“|ﬁ+1,ﬂn.-
i '

+ch™ \/hz ul2, 11 00, + (th)"‘“(HfDl”“’llulla.n}:

where u, u® are respectively the solutions of problems (£.1) and (3.2); energy norm fv|| s

defined by
“""i = Z(Vu, Vu)q,.
Proof. For each (v*,¥*) € Spxu, we have

Z {(Vy, Vul)qg, — (fivP)a} = Z (Bu/In)v™ds

5 a101;

=3[ (8u/an)(v* —¥)ds < 37 |0u/Bnlo 00, - [o* ~ $F oo,  (45)

T Jan,

Let ©; denote the average value of v* on (1;. Using the Poincare inequality and the inverse
inequality, we have

|1l-"‘IIL “‘¢’H Iu,an.- == |(Uh = ﬂi) — (KbH A ﬂi)|u.an.- < ﬂhmﬂwﬁr = ﬁi|m+lﬂﬂ;
< c(h/H)™THN2|YH — ;)12 00, < c(h/H)™ L HY2|vP — 5|1 /2 00,
< c(h/HY™ 1 H2|oh 1. (4.6)
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Combining (4.5) and using the Schwarz inequality, we have

Z(v(uh _ H),vﬂh)ni < c(th)m+1H1f2‘/Z laufan]ﬁfan‘_"u"h.

Noting that u® — #u = u — fu + u® — u, we get

Z(V(uh — ﬁu], Vu")ni E Z(?(u — i'u], ?uh)n‘.

+e(h/H)™ 1 HY?| vk ||ny /T, |9u/3n3 o0,

Letting v® = u® — #u gives

u* ~ #ulln < [lu— Fulla + c(h/H)™*! H“‘*’\/Z 3u/8n13 501 (4.7

u — Fullp < JJu— 7ulls 4 |7u — #Fu||p < ch"‘\/z ju|Z, 1.0, + 7w — &yl (4.8)
. i
Applying Lemma 2 todunction ru — fu, we get
ixu —Fu||Z < ch™? Zf Iru — fu|ds
~ Jan,
< ch™1 Ef (|#u — Fu|? + |#u— u* + |u — 7ul*)ds
— Jan, _
< ch™? f u — 7u|’ds 4 ch®™mt! ul? +ch? f [#u — 7ul|?ds
) I > sran + 5 [

<igh 3 A=l E |“|i+1,an.- + ch*™ T Z |“|ﬁ;+1,an; +ch™? Z[ |Fu — Ru|*ds.
i ‘ i =gk

(4.9)
Since

-1 |a 2 2m-+1 2
h |""'“ = ’T"|n.an,; < ch 1*“ m4 1,300,

< ch?2m*(|xu — ul? ) o0, + |ulZi1.00,) < ch®™THulZ 1 00, - {4.10)

combining (4.7}, (4.8), (4.9) and (4.10), we get

Ju — ulln < chm\/}: o c(hxmmﬂﬂm\/z /3 0,
! i

+ch~t/ZHn+] \/Z |ulgs,0, +ch™ \/h z [ulm-+1,00;-
y i

Since
Bu/anfE oa, < e{d ™ ull g, +djulfa,} < cd™ ]2 q,,

the proof of Theorem 1 is completed.
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It is evident that the convergence rate of the non-conforming method is the same as that
of the conforming method under the condition of Theorem 2, by the following Theorem 1.

Theorem 2. If m+ 1)(m+1/3) < n+1/2, and clh‘ﬁ’-ﬁ < H < pggh(2m+1)/(2n+1}
where ¢c; and ¢y are positive constanits, then we have

u — uh < ch"‘{\/z 4,10, + \/Z lulﬁﬂ,m.\/h 3 s 00,)
i ™ 1

with consiant ¢ independent of h, H,d and the solulion u.

§6. The Condition Number of the Capacitance Matrix

When we carry out the algorithm in Section 3, we solve the equation CY = g with the
iterative method. The conjugate gradient iteration is usually used, The convergence rate is
dependent on the condition number of matrix C. We estimate the condition number of the
capacitance system in this section.

Lemma 3. There 1s a constant ¢ independent of h, H and d, Such that
lo"lo.a <el|lvPlln  for all (v*, ) € Suxu. (5.1)
Proof. Confidering the equation
~Aw = v* in 1],
{ w = 0 on 211,

we have

(v", v%)a = (—Aw, v*)q = Z(?w, VMg, + ) [ (Bw/an)(v* —¢F)ds.  (5.2)

- a11;
Applying (4.6}, we get
> [ (@w/on)(v* — p7)ds| < 37 [(3w/Bn)lo.0q, - [ — 90,00,

T Jany

< c(h/HY ™ H? oM |ln1 /X, |(9w/0n) B 5, (5.3}

By applying the imbedding theorem of Sobolev space and the theory of elliptic equations!®l,
we get |

|ZI (8w/3n)[3 aa, < ¢ ) _{d7|Vu(§ q, + dIVulig,)
=]

<) (@7 Vul} g, + dlwlia,) < c(d+d7 ) foq - (5.4)

By (5.2), (5.3) and {5.4), we get

B a <D |l - v*10, + c(h/H)™ [vP[o,allv™ |Is
¥

i \/E wlLalle* s + c(h/H)™ o loallo™a < ello™la - [*lo.a-
$
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This completes the proof of Lemma 3.

Theorem 8. For the algebraic aystcm (3.2), the condition number of the capacitance
matriz is O(d~1H™1).

Proof. For each (v,9) € Spx g, let V € §;, be the discrete harmonic function defined by
(VV,Vé)g, =0, forallp€S,, V =von d.
It 1s easily seen that

min (Vw, Vw)q, = (VV,VV);.. (5.5)

wES,
“lﬂn =

Let U € HY () @ H (Q12) ® - - - ® H'{).4) be the harmonic function defined by
(VU,V®)q. =0, for all ¢ € H (),
{ U=v on 3.
By applying the triangle inequality and the theory of elliptic equations [3], we get
(VV,VWW)q, < (VU,VU)q, + (V(V - U),V(V = U))a, < ¢c|vli/zan, +ch>* [U)l1+e0.,
where 0 < ¢ < 1/2. Using Lemma 1 and the inverse inequality, we have

(VV, W), < clulla’ﬂﬁﬂ + ch|vfi /24 6,00, < eVl j2.00, < cl¥li/2,00, < cH Y13 a0,

(5.8)
On the other hand,
SV, Va2 ¢ Y VI, (5.7
$ {
By Lemma 3. Using Lemma 1, we have
%15,00, < ¢lvl3,aa0, < {d[VIia, +d7VIGa,} < cd™HV]3q.- (5.8)
By (5.7) and (5.8), we get
ed ) [¥[3.00, < D _(VV,VV)q,. (5.9)
1 !

Then by (5.9) and (5.6}, we have :
cd ) 1¥3 a0, < D _(VV,VV)a, S cH ' ) |93 50,-

'

This completes the proof of the theorem by noting (5.5).
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