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Abstract

In this paper we consider the finite element method for nonlinear elasticity
in the case when body force is small. The incremental method and the improved
incremental method are investigated, their convergence are proved and the error

estimates are obtained.

§1. Introduction

In the present paper we discuss the system of nonlinear elasticity :

{ —8i{oi; + orirwi) = fi, ,

=123 (1.1)
w; =0, o1,

where u = (uy, uz,us, )7 is the displacement vector, f = (fi, f2, fs)T is the exterior
body force, and

0i; = AEri(u)bi; + 2uE;(u) + o E),
while
G
E(u) = %(VHT + Vu + Vul Vu). (1.2)

We confine ourselves to the case when body force is sufficiently small. Hence
we may suppose (see §5 for details) :

Oiy = I\Ekk (u)ﬁij # 2}1Eij (u) (113)

There are some mathematical results about the system (1.1). Especially, Cia-
rlet and Destuynder [1] proved the existence and uniqueness of solutions for (1.1)
when f is sufficiently small. Bernadou, Ciarlet and Hu 2] proved the convergence of
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semi-discrete incremental methods for (1.1) in the case when f is sufficiently small.
Ciarlet [3] summed up these results. These theoretical results and the wide applica-
tion of finite element methods have promoted the investigation of the finite element
methods for solving (1.1).

The present paper proves the existence, the uniqueness and the convergence
of the finite element solutions and the convergence of the incremental methods for
(1.1) under the condition that 32 has certain smoothness and f € (W*((1))3 is
sufficiently small. Error estimates of the incremental methods are also given.

In the present paper we assume that {2 C R® is a bounded connected open set
with 311 sufficiently smooth and consisting of finite disjoint simple closed surfaces.

Let {1), C (1, A > O, be regions composed of a finite number of polyhedrons. To
each 1, there corresponds a regular triangulation {cf. Ciarlet [7] ). We assume that

(1), satisfy max dist (z,311) < kh?, where k > 0 is a constant which only depends
zE3M,
on {1l.

For convenience, let W'?(1) denote (W1#(1))*, C(f1) denote (C(£2))*, ¥ (D)
denote (H3(1))3, etc.
Denote

- {u & C(@)]ulma, = 0, ulx € A(K),VK € J,.}

where P(K) is the set of polynomials of second degree defined on K.
In §2 we will review some theoretical results about the system (1.1). The

proofs of these results may be found in Chapter 2 of [3]. Some of the results are
given in a more generalized form, but the original proofs remain valid if we note the

results of Agmon, Douglis and Nirenberg [4].
In §3 we will investigate such properties as the existence, the uniqueness and

the error estimates, etc. of the solutions of the corresponding variational problem
of (1.1), when the problem is confined to the finite element space V), .
In §4 we will investigate incremental methods, and their convergence and the

error estimates.
In §5 some additional notes on ¢;; are given.

§2. Some theoretical results

We write (1.1) in the form of an operator

A WrHRR(O) A Wy (1) — Wm™P(0),

- Au=f,
A'(0) denotes the Fréchet derivative of A at 0. Let

(2.1)

e(u) = }(VuT + Vu),
&:5(u) = Aerk(u)6;; + 2uei; (u).
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Then A'(0)v = f can be expressed in component form as

-0;7;(v)=fi , 1,
v =0 , 60,
In order to change the problem (2.2) into a variational form , we define

1 =1,2,3. (2.2)

a(u,v) = f (Aexi(uv)en(v) + 2peij(u)ei;(v))dz,

L(v) = nf-ud:::

where u,v € ¥1(0). The variational problem of (2.2) can be expressed as

{ Find u € ¥3(€1), such that

(2.3)
a(u,v) = L{v), Vve X5(Q).
Theorem 2.1 (Korn’s inequality [5]). Suppose 911 1s sufficiently smooth.
Then

{‘I.I & Ez(ﬂ)|sﬁ(u) c L’(ﬂ),l S I,J ﬂ 3}= Nl(ﬂ),
and there are constants Cy > 0 and C3 > 0, such that

CillvllLa < (lola + [e(v)i§0)Y/? < Callvlia. (2.4)

| Corollary (cf. [3]). The semi-norm |e(v)]o,q is equivalent to the norm vl
in ¥3(D).
It follows easily from Theorem 2.1 that a(u, v) is a continuous positive definite
bilinear form defined on ¥2(€2) x ¥} () provided that A > 0 and 4 > 0.
Theorem 2.2 (cf. [3]). The variational problem (2.3) has a unique solution
ue X3 () ,ifA>0and p>0.

Theorem 2.3. Suppose 351 is sufficiently smooth, and f € Wm™P(Q),p 2 2.
Then the solution u € ¥} (Q2) of (2.8) ts also n

Ve = {u e WA ()v =0, on an}. (2.5)

Note. The case m = 0 was proved in [3]. The proof of the case m > 0 is based

on the proof of the case m = 0, but the result of Agmon , Douglis and Nirenberg [4]
should be taken into account. ,

Theorem 2.4. Suppose 311 is sufficiently smooth, A > O,u > 0, and f €

W™?(Q),p > 3. Then there exist constants 6 > 0 and M > 0, such that there exists
u € W™t2P(Q), which satisfies Au=f, and

ullm+z,p £ Mi[fllmp (2.6)
provided that || f|lmp < 6.
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Note. The proof for the case m = 0 is given in [3]. The proof for the case
m > 0 is similar if we make use of Theorem 2.3 in showing the regularity of the
linearized operator.

Theorem 2.5 (Inverse function theorem [6]). Let By, B; be Banach spaces.

Let U C By, V C By be open sels tn Bl,Bg respectwely Auume u E U, A U s V et

is a differentiable map, Au=veEYV.
Suppose A'(u) 18 tnvertible, and || A’ (u) 1” < Cl Suppase A'(u) 48 umformly
Lipschstz continuous with respect to u € U - .

I(A'(H) - A'(u))wna; < Gyl — allz, iz,

Then for YAv € B; which satisfies v + Av € V,||Av||p, < 4—0%3, there ts a
1“3
Au € By, such that u+ Auc U, A{u + Au) = v + Av, and

|Au||z, < 2C1||Av|s,. (2.7)

< weics )

Here we assume U D {‘ﬁ c By

§3. Formulation of the finite element
methods and the properties of solutions

fit €0 D, Jo antinfy ihs mondibions siven B §i.
Viy = {u c C(ﬂ)‘uln\nh — 0,u|g = Pz(K),VK.E Jh}

In the following we will investigate the problem in these finite element spaces.
First we define an operator ¢, on V), as follows :
Definition 3.1. Suppose u € V). If g € V), salssfies

[ﬂ(aﬁ + ok Ot )F5vdT = /;?Qh -Vvdz = [g,,v] (3.1)

for Yv €V}, then we define ¢p(u) =g, .

Note 3.k, It is obvious that the left-hand side of (3.1) defines on V) a
continuous linear functional, and V}, is a Hilbert space with [-, -] as its inner product.
Hence for any u € Vj, there exists a unique g, € Vj satisfying (3.1). So ¢ is well
defined.

Note 3.2. Let u € W1*(Q) N ¥ (0). Suppose ; € ¥3(N) satisfies (3.1) for
Yo € ¥}(f1). Then we define ¢ : W1(02) N ¥} () — ¥3(2) as ¢(u) = g. With the
same argument as above, it follows that ¢ is well defined.

It is easy to verify that the operator ¢, is continyously differentiable. We have
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(@) (u)v, w] = L{Asu(v)é,-_; + 2ue;i{v)) 0 uy
+[2(Brwmdrvr + Aenidw)8i; + w(B5uudivx + Oiur;vi)
+(Aeri (v)0m; + 2pEmi(v))Omu; + AQ )8 V1 6m 5O m U
+p(OmurdivE + OmUr0;ug)0mii + O (u)amui]ajtu;}dz

(3.2)

(3.2) can also be regarded as a definition of ¢} (u)v.
Lemma 3.1. There exist constanis ag > O and n > 0 whick only depend on

A, p and 2, such that
[Sh(u)o,0] > Fhelis, Vo e (),

if {u|1.00 < 1. The inequality holds especially for ¥ v € V.
Proof. By Theorem 2.1 , i.e. Korn’s inequality, there 18 a constant ag > 0,
such that

fﬁ (e (v)8:; + 2ueis(9))3;0idz > aololls, ¥V v e NI(A).

From (3.2) it follows easily that there is a constant > 0, such that the lemma
holds for ju|100 < 1. QED.
Define
Un = {u € Vallul1,e0 < n}-

Then Corollary 3.1 implies that [¢/ (u)v,v] is a continuous positive definite
bilinear form defined on the space V}, XV}, whose norm is induced from -, ], provided

that u € Us. In other words, ¢}(u) : Vi — V} is a uniform elliptic linear operator

forue U,.
Lemma 3.2. Suppose u € Uy, g, € Va. Then there exists a unique v € Vj,

such that |
[k (w)v,w] == [g,,w], YweV;,

and
vlaz < Blowliz, B=2/a..

" Proof. Note that V}, is a Hilbert space with [-,-] as its inner product. The
lemma follows from Lemma 3.1 and the Lax-Milgram theorem (cf. [8]). QED.
Remark 3.3. By means of the inverse inequalities (cf. [7]) on Vj, we also

have the estimate
l“‘l,m < ﬁlhnaﬂlgh‘l,h

where ﬁllis a constant dependent only on A, i, and 1.
By Theorem 2.4, we know that for any f € W'#(Q) with || f||m,, sufficiently

small, there exists a unique u € Wmt2P((1) N X5 (£2), such that

Au = { and [ullm+2, < M|[S]lmp-
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The weak form of Au= f is

L(d‘ﬁ <+ a;,-a,,tu)aju;dz = L frvdz, YvE N& (ﬂ). (3.3)

It would be inconvenient to discuss (3.3) on Vj, so we introduce the following
definition :

Deﬂnition 3.2. Suppose f € L}(N). We define Y(f) =g ¢fg € X3(02) and
lg,v] = j;]f cvdz , Vv e X3 (N).

b ts well defined because [-,:] is an tnner product of X; (1) and f f-vdz 48 a

continuous linear functwual defined on ¥3{01). We have in addition that |¢(f)]1,2 <
WFilz2, there ¥ > O 18 a constant.
Now we can write the weak form o)" Au= f as

fn (035 + 01305 :);0:dz = [9(f), v,V v € N3(Q). (3.3)°

By the definition of , we have ¢(u) = ¢(f) (c¢f. Remark 3.2). Let xp : wmtie(Q)
— V), be an tnterpolation operator. Denote u) = wpu.
Lemma 3.3. Let u € W™t3P(11),up = mpu. Then

|¢(u) — ¢(ur)l1,2 < Clu — uajr3 (3.4)

where C i3 a constant dependent on |u|y oo, |t — Ual1,00, A and p.
Proof. By noting that operator ¢ is continuously differentiable and (3.2) de-

fines its derivative operator, we have a 0 < # < 1, such that

d(u) — #(un) = ¢'(un + 8(u — ua))(u — u).

Now, (3.4) follows from this equality and (3. 2) QED.
Definition 3.3 (Vi,[-,¢]). 12 a subspace of ¥3(f2). For any g € ¥; 1(£2), denote
by (g)a the orthogonal projection of g on (Vj, |-, ]),: e.(g)n € Vi, and

f i)y + Vo= f Y- Vudi , ¥9EV (3.5)
By Deﬁmtmn 3.3 , it is obvious that

(¢'("))h — (#(un))n = (¢(u) — $(un))a-

Hence

(@(w))n — (S(un))nlrz < [p() = S(un)la,z (3.6)
From Definition 3.1, (3.3)’ and (3.5), it follows that

dn(un) = (d(ua))n- (3.7)
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Taking f € W1?(), from Theorem 2.4 it follows that the solution of Au= f
is in WP (Q)NNI(11), and |juflsp < —2% if || fll1p € 7&—%— By the Scobolev imbedding

theorem (cf. [9]), we have in addition |u|;,c0 < g—, where 7 is the Sobolev imbedding
norm . From the interpolation theory of the finite element spaces (cf. [7} , {10]), we
have

| _ hptt|),00 < Ch"1/F|u\3IP , p> 3,
|t£ - mr;.ullrg < Chz‘ﬂlgig.

Cmﬁbining with Theorem 2.4, we get
|u — mpul1,00 < CREIP|ifll1p, (3.8)

lu - “’h""l,? S Chz“fl 1,p- (3.9)

Hence uy, = mpu € U), if h is sufficiently small and || fll1, < fftnrpi
Lemma 3.4. ¢, (u) : Vj — Vj is Lipschitz conlinuous on Uy, and

(¢4 (1) — S (u2))v, w]| < Balur ~ v21,00[0]1,2lw]1,2 (3.10)

for Yuy,us € Uy, and Yo,w € V.

Proof. We only need to verify (3.10). But this can be directly derived from
(3.2). QED. .

Remark 3.4. Let w = (¢ (u;) — ¢4 (u2))v in (3.10). Then we have

|(¢L("1) — L(“i))”h.z < Balur — "2|1,m|“|1.2 < ﬁ3|u1 - “2|1,m|”|1,m* (3-10)’

Theorem 3.1. Let f € WP(Q),||fll1p £ 2—&;; Suppose Au = f,up = Tpu.
Then there exists a constant 6 > 0, which may depend on h, such that for Vg € Vi,

there i3 a @) € U), which satisfies ¢p(tn) = g and
N [in — Ual1,00 < 28,h3%|g — (#(un))nls2
orovided that |g — (¢(un))nli2 < 8. Here & can be taken as Tgmhm.

Proof. By Lemma 3.2 and Remark 3.3, we know that ¢}(u) : (Va, Wilee) —
(V, #3) is invertible provided that u € Uy, and that @) (u) | < B1h~%/%, By

. 3
Lemma 3.4 and Theorem 2.5, it follows that for Vg € V}, if |g — (#(un))nlrz < y %153 ;

then there exists a @) € Vj, such that ¢x(@is) = ¢, and
| 3/2
‘ﬁh - “hll.m < 2ﬁ1h_3f=|g - (¢(uh))h|1,; < g
2p1Ps

Heﬁce for sufficiently small A, one has

lﬁh‘l,m < |“‘l,m + |“ i “h'l,m + I“h = ﬁhll,m
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t.e. 4 € Uy.

The above procedure can be continued if ux and (#(un))s are substituted by
i) and (@(Gx))s = g respectively.

Let k be the maximum integer satisfying

3/2
. - Cr}hz_%.

k
2618 — 2

~
Assume hg satisfies Cnh: P« {},ﬂlgﬂhg’"’ > 1. Then for all h < ho we

have
28103 1 31, . P1Bsn, _
k+1}—ﬁa—(§—0ﬂh P)E’_ ” h3f2
or

k> ﬂl‘imh“s/’.
Hence the above procedure can iterate at least k times if A < hop,s.e, as soon

a8 ¢ € V), and

g — (#(ua))nlr2 < —L_p3,

1651
there will exist a @i € Uy, such that ¢,(iix) = g, and |
[aa — unlro < 28075 2g — ((un))nlrz- (3.11)

3/2
Let 6 = "i%ﬁ_; the theorem follows . QED.

1
Remark 3.5. In Theorem 3.1, n can be substituted by CM||f||1,p-
Theorem 3.2. Let u;,uz € Uy. Suppose dp(u1) = g1, and $p(uz) = g2. Then

lug — ugly2 < Blor - g2|1,2, (3.12)

u1 — v2f1,00 < 1A g1 — g21.2. (3.12)°

Proof. We have for Vv €V}

[¢h(“l) = ¢'h(“2), ”] = ./:[tﬁ;,(uz + t(ul = ug))(ul o ug),u]dt.

Let V = u; — u2. By Lemma 3.1, we get the following inequality and hence
(3.12) ; -

L8/
| (91 — g2, 11 — u2] = [@alu1) — Pa(uz),us — g} > ?ulul - uglf 4.

(3.12)’ comes from (3.12) and the inverse inequalities on V} (cf. [7]). QED.
Theorem 3.3. There 15 a constant h > 0, such that ¢/ h < h, then for

Vi € WP(Q) satisfying || f|l1p < 2—’3];? _ there exists a unique Gy € Uy which solves

én(@n) = (L(F))n
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where (Y(f))n is defined by Definition 3.2 and Definition 8.3.
Let u be the solution of Au= f. We have estimates

|tn — 61,2 < CR*||filLp, | (3.13)
lin — t]1,00 < ChY2|| |10, (3.14)
|Gnl1,00 < Cllfll1,p- (3.15)

Proof. From (3.4) and (3.6), it follows that
($(u))n — ($(un))alrz < CHY( fll1p-

Hence

~ N 2
[(¢{u))n — (#(un))nliz < 1—6'-"'5—1}:’4’, for h < ( 8‘:&,) _

By Theorem 3.1, there is a @) € Uy, such that ¢x(%a) = (¢(u))s, and
Gh — Unl100 < 200A732|(B(w))n — (B(ur)nlrz < CAY2||f|l1p-  (3.16)
By Theorem 3.2 and (3.12), we also have
[@n — unl12 < Cllf 104" (3.17)

On the other hand, it follows from (3.3)’ that ¢(u) = ¢(f). Hence ¢(@ip) =
(%(f)n.

The uniqueness is a simple corollary of Theorem 3.2.
By the definition of (4(f))a and the definition of dn(@n) = (¥(f))n, we have

[ (o5 + orsormn)djudz = [(B(Naro) = W)yl Vo€ Vi
By the definition of 1})( f), the equality can be further expressed as

'/;(ﬂ‘gj (t'i;.) -+ ak;(ﬁh]a,,ﬁ“)ajvidz = '/; f . ud:c, Vv € Vh' (3.13)

By comparing (3.18) with (3.3) , we conclude that &, € V), 1s the finite element
solution of Au = f on V}. Combining (3.8),(3.9) with (3.16), (3.17), we get (3.13)
and (3.14). (3.15) now follows from the fact |u[1,00 < C|fllip- QED.

§4. Incremental methods, their convergence and error estimates

Assume f € W2(Q),[|f|l1p < iﬁrff For the sake of convenience, we denote
($(f))n = f (cf. Definitions 3.2 and 3.3), and denote u(tf) as the solution of
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Au = tf, and u,(tf) as the solution of ¢p(u) = tf. From §3 we have for 0 < ¢t < 1

[un(tf) ~ u(tf)l1,c0 < ChY2t||f]|1,p, (4.1)
[un(tf) — w(tf)l1,2 < Ch*t||f]1,p- (4.2)

Now we are going to expound the incremental method :
Fix V4. Let 0 = 15 < t; < -+ < t, = 1 be a partition of [0,1] satisfying
mf'x(tk-l-l ~ 1)

mén(tkﬂ — b))

Define u,f =0,1,---,n, in the following way :
D
u; =0,
R e | (43

where v}, € V), satisfy the equations
h(ut)vi = (tip1—6)f, 0<i<n-1. (4.4)

We take u} as an approximate finite element solution of u{f).
Theorem 4.1. Take t < Q%h"'ﬁe'”"_m, whrer C = 2861837 f|l1p, 15 a

constant { % ia a constant, |fli2 < A||fll1p). Then ul,0 < 1 < n; defined by (4.5)
and (4.4) are in Uy, and

< p with p > 1 a given constant. Denote t = mfx(tk+l — ).

ut — up{ti 100 < C(1 + Ch™3/2t) n—3/2 (4.5)

* ut — up(t; )12 < C(1 + Ch™3/2t)t. (4.6)
Proof. We will use induction to verify (4.5) and (4.6). If (4.5), (4.6) are verified
, then u‘;‘ € U, follows easily from the limitation of ¢.
(4.5), (4.6) are obviously true for 1 = 0. Assume (4.5), (4.6) are true for i. By

the inverse inequality , to complete the induction, it is enough to prove that (4.6)
holds for ¢+ + 1.

Let &}, be the solution of

Wun(t )8, = (tiv1 — 1), (4.7)

By definition , we have

&) (uh)vh — dh(ua(ti))v} =0

$h(unti ) (vh — o)) = (Sh(ua(tif)) — &5 (u})) o}
Hence

oh — 5 = g (unt: )" (Ghun(t: ) — Sh(ud)oi



No. 1 The Finite Element method for Nonlinear Elasticity 11

e ————— e e et

By the assumption of the induction , we have u}, € Up. Then, it follows from
Lemma 3.2 and (3.10) that

0§ — Til12 < BBalun(tif) — uhl1,c0lThl1,2- (4.8)
Again by the assumption of the induction, Lemma 3.2 and (4.7), we get
|vf, — Bhl12 < §C?H33(1+ Ch™3/2t)'e2, (4.9)

On the other hand, we have
Pa(unlti+rf)) - dn(un(tif)) — ¢L(“h(tif))ﬁi = 0.
Hence there is a § = r{us(tiz1f) — ua(t; f)) such that
& (un(t:i ) + 0)(un(tisrf) — un(t:)) — Sh(un(t:f))oh =0

or
un(tinnf) - un(tif) - 9 = S (un(tef) +0)7H(h(ualtif))
— ¢ (un(tif) + 8)) ;.
Then, it follows from Lemma 3.2 and (3.10) that
lun(tisrf) — ua(tsF) — Tilrz < BBalun(tisaf) — un(tif)|reolthl12.  (4-10)
By (3.12)’ and Lemma 3.2, we get
un(tis1f) — un(t:f) — Biliz < 1C2R=3/%2, (4.11)

Because |ul, + v}, — up(tis1/)| < |u — ua(ti )] + vk — 84| + 18, — un(tr £+ un(ti 1)l
it follows from (4.9), (4.11) and the assumption of the induction that

05 — un(tisr Dz < C(L+Ch-3)*e,

These complete the induction. QED.
3 max(trs1 — i)

/3 p—8/2
of ]"”IF in but nt < . = :
m:n(tlwl te)

Remark 4.1. (1+Ch~3/%)* = [(1+Ch~%/%t)
Hence (1 + Ch~3/2t)" < ecth ™%
Define u} = u}. We have inequalities

ui‘—- uh(f) 1,00 < Ch"3f23ﬂﬁh-ant"f”1'p, (4.12)

uf, — un(f)l12 < Ce? 1)\ flfa,p. (4.13)

(4.12) and (4.13) imply that u} — up(f) ast — 0.
Theorem 4.2. Suppose f € WHP(Q1) and ||f|l1p < Q_ﬂﬁf Then, if h < h

and t < 2%!;3/%"?"_”“ , we can get an uppro::::matc finste element solution u}' by
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means of the incremental method defined by (4.3) and (441 ), ik ereor cobimubes
juf, — (D0 < CEA32eh ™ + B2 fll1p,  (4.14)
uh = w(Nlz < Cee™ + Sy  (415)

by now, we have proved the convergence of the discrete incremental method,
and also offered error estimates. But tn the error estimates, the coefficient of t 1s
an ezponential function of h since there exists h=3/2 in the estimate of ||¢}(u)!|.
This 18 more or less unpleasant.

Now, we are going to give an smproved sncremental method, the estimates of
which wall have an h—independent coefficient of t.

Fix Vy. Let 0 = tg < ty--- < t, = 1 be a partition of [0,1]. Denote t =
ma.x(t;,_.,_l — t3). Define {u}}", tn the following way :

“h =0,
¢h(ul)vh =t f —dalu}) , 0<i<n—1, (4.16)
uitl=ul +vl , 0<i<n-1

Taking u? as an approzimate solution of up(f), we have

Theorem 4.3. Suppose f € WHP(Q),||f|l1p < 2—&—:,}1 < h (¢f. Theorem

3.8). Let C = 281827|fll1p (where 5 is a constant, such that |f|12 < 7|/ fll1)-
Then u},0 <1t < n, defined by ({.16) are in Uy, and have estimates

|ui — “h(tif-)h,m < 2C’Zt2h"3, 0<13<n, (4.17)

lub, — un(t: Dlrz < 20%7K-3/2, 0<i<n. (4.18)
We have in particular
Il — up(tif)l10 <Ct , 0<i<n, (4.19)
|u§,-—u;.(t;f)|1,250t , 0<isn . (4.20)

Gt £ Ay with K < O
7C .

Proof. Only. (4.17), (4.18) are to be venﬁed We will complete the proof by
induction.

If (4.17), (4.18) hold for 1, then it is easy to show that u}, € Uj. It is also clear
that (4.17) is a direct conclusion of the inverse inequality [7] and (4.18). Therefore,
we only need to prove (4.18). It is obvious that (4.18) holds for s = 0.

Assume (4.18) is true for 1. Then it follows from (4.16) and t;+1 f = ¢n(un(ti+1f))
that

#h(uh)vh = dn(un(tiz1f)) — éalul).
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And there is a 0 < r < 1, such that
on(un(tisrf)) — da(uh) = $h(uh + r(un(tirrf) — wh))(unltisrf) — ui).
_Denoting uj, + r(ua(ti+1f) - ﬁi) = u7, we have .
v () — ) = () Gh() — b)) altisa ) - o)
By Lemmas 3.2 and 34, we have
ubtt — un(tiv1 Nz < BBalun(tivrf) — vhlicolunltisaf) — i

But jup(tis1f) — uh| < |un(tisrf) — un(tf)| + lun(tif) — u}|, so it follows from
Theorem 3.2 and the assumption of the induction that

un(tisrf) — ulliz < Btlfl1z + 2C77H%2,

‘ 3/2
Because ¢ is taken to be not greater than g—cf min{n,1}, we get

1.2

lui'l-l — “h(ti-f-l.f-)ll,z < 2C*R-3/22,

This completes the induction. QED.

3
Corollary. Define u} = u}. Then ,ift < 2%, we have u}, — up(f) ast — 0,
~ and. |
lut — up(f)]1,00 < 2C*E2R7° < Ct, (4.21)
|ut, — ua(f)l12 < 2C%A~%%2 < . (4.22)

- 3
Theorem 4.4. Suppose f € WHP(Q),[1f]l1p < %,h < h,t < 2% Then u},
is an approzimate finite element sglution of Au= f. And we have error eslimates

[uh — w(Flro < Cllfllup(t + A21), (4.23)
uf, — u(N)1,2 < ClIfllap(t + A?). (4.24)

Proof. The conclusion comes from Theorem 4.3 and its corollary, and {3.13),
(3.14). QED. .

Remark 4.2. From (4.21) and (4.22) we may find that the algorithm defined
‘by (4.16) is virtually a second order method. We would be able to show that ul,
converges to uy(f) with rate Ct?, where C is independent of h, if we could prove
that the norm ||¢%(u)~!|| is independent of A.
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85. A More general form of o

All results in this paper are proved for the case where
Oi5 — AE;,k(u)ﬁﬁ o EyEﬁ(u), A>0,u>0,

But in fact, they also hold for the case when ¢* € C™T2(M3, M3), M® is the space
of third—order matrices, and o

o*(E) = o(E) + O(E).

We have E;;(u) € Wmt1e(Q) provided. that u € W™t2P((1). Hence it can be

showed that ¢;(E), Doj;(E) € W™12(1Q1) (cf. Theorem 2.3-2 of [3]). Thus A; =

div ((I + Vu)e*(E)) € CY{{(Wn*t3p(1), W™P(Q)). 1t is easy to verify that A,(0) =
A’'(0). These ensure that A}(u) and A, are invertible when |ul; o, is sufficiently
small (cf. Theorem 2.3-3 of [3}).

We can show that E{u) is small provided that u is small, and thus that O(F)
and its first derivatives will also be small. Hence there exists a constant n*, such
that ¢, #», ¢} (u) will keep their properties when o is substituted by ¢* , provided
that |u|1,00 < n*. Thus all proofs in Sections 3 and 4 still work for the o* case, i.e.
all results in this paper hold if A is substituted by A;j.
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