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Abstract

Since the present condition numbers of the eigenvalue are not convenient for
control systems design, this paper puts forward a new condition number and

indicates its application in designing robust control systems.

1. Introduction

A most important tend in the development of control theory is the design of ro-
bust systems [1]. However, the system robustness is heavily related to the condition
number of the eigenvalue. If we can design a system which has not only satisfactory
properties (such as having prescribed eigenvalues), but also a good condition num-
ber, then, when the model is exactly equal to the actual system, the system will have
a good working properties, and when there exist errors between the model and the
system, the system performance will not be too bad. This field has attracted many
control theory scholars and engineers [2], [3]. But the existing condition numbers
of the eigenvalues are not convenient for designing systems, so the present methods
(such as [4], [5]) cannot ensure the condition number of the eigenvalue of the system
to be an optimal condition number in actual constraints. This paper proposes a new
condition number for solving the problem. '

2. Main Result

It is well known that, if X~'AX = J, where J is a Jordan matrix, then the
condition number of the eigenvalue of matrix A becomes || X~} - || X||. The most
popular condition number is the spectral condition number, K 2(A) = ¢1/0,, where
0n,0y are the smallest singular value and the greatest singular value of matrix X,
respectively. But o; and oy, cannot be determined if the matrix X is not determined.
He [6] gives another condition number as follows:

K{A) = (B[XX1 X2+ Xyui])
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where X;(f = 1,---,k) are column vectors of X, which are standardized, E{X. X, ---
Xi-1] = [G(Xy-+- Xi)/G(X1 -+ Xx-1)]"!, G is a Gram determinant, and the sub-
script k equals e-rank of the matrix X. Obviously, the definition is too complex to

compute. we give another definition.

Definition. Suppose A is matriz of order n, and X;(t = 1,---,n) are stan-
dardized eigenvectors or generalized eigenvectors of matriz A. X — (X1, X2, +, Xn).
Define the condition number of the esgenvalue of matriz A as

1

K(4) = oz

New, we will prove that the definition is reasonable. First, we introduce the
following

Lemma [7]. Suppose that the real coefficient polynomsal f{z) = a,z" +
an-12"" 1+ 4+ a1z + ag with a, > 0 and ap—p being the first negalive , and B 1s
the greatest value among the absolute values of the negative coeffictents. Then

N =1+ {/B/an

13 an upper bound of the roots of f(z).
Theorem. Suppose X is a matriz composed of standardized eigenvectors and

generalized eigenvectors of A. X = (X1, Xz,+--,X,). Note A =det(XTX). Then

o2 > : =
SR

where \/oZ 1 the minimal singular value of X.
Proof . Note A; = af. Since A; are eigenvalues of X TX, so

(‘XTX)Y =Y. dla'g (Jf,ﬂ';,' i :Ji): (1)
o} >0, i>j, (2)
n ¢ ]
[[e2=]])=X"X=A. (3)
t=1 t=1

Since X; are standardized vectors, so

i X = Z“: o} = tr (XTX)=n. (4)

=1 =1

Note
Ky = {oilo satisfy (1),(2),(3), (4)},
' {a';'o',- satisfy (3),(4)}.
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Wehavea'eﬁ cr },m]ﬂ cr
So we only require estimating the lower bound of m.lﬁ ::r . Constructing the

Lagrangian function for mnm }? o2 we have

_a’+ﬁn(l—[ﬂr --ﬁ)+51(z:a' — n), (5)
=1 t=1 ‘

8L = 2po [ o}oi + 28104 =0, (6)
JF#

Baﬂ'_i 20+ 2)30(]:[ o, JI‘I) + 260, =0, (7)

J#En | ' _

oL _ 7 arf —A=0, 8

35 .=1;[1 (8)

oL _ -

mmgﬂ"?—ﬂ—n, (9)

and

IFin (10)
= 205+ 2[Bo [[ ojonoi — Bi)(ei —on) =0.

JFEn

Since |XTX\ # 0, according to {1), o, # 0; s0

Oi £ 0n, VIFn, (11)
oL oL
agt- a—a} — (2ﬁﬂ kH -ﬂ':#jﬂ'i e Zﬁll(ﬂ'j = ﬂ'.;) = . (12)
#1.)
Therefore

o;=0i, $F7J ViL,3Fn, - (13)

Bi/Bo= 11 a,,a,a,, Vi, k#ns#£j#k (14)
k#s,3 .

By symmetry, equation (14) is equiva.lent to equation (13). So, all the solutions of
(12) are in equation {13).
Substituting (11), (13) into (8) , (9) and letting

A=X, t£n

we have

An-lln o ﬁ’ | (15)
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(n~ 1A+ A —n=0, A=2"20 (1)

Substituting (16) into (15), we have
FOn)=m-2)" A —A(n-1)"""=0. (17)

Since equations (6)-{9) are necessary conditions of the problem

Jnip op = mip A, (18)

if A}, is a solution of (18) , then A, satisfies equations (6)—(9) or equivalently, (17).
As A} is a positive number, it must be greater than or equal to the minimal positive
root of (17). Therefore, we only require estimating the lower bound of the minimal

positive root of (17}.
Considering ¢(An) = AR S (11—], if «x is an arbitrary positive root of f(A,), then

% 18 a positive root of ¢(A,). If N is an upper bound of the positive roots of p(A,),
then %7 is a lower beund of the positive roots of f(Ap).
e(n) =22 [d(n— L)1 = Al - )™ = (Ae - )™ - Al - )10

=An-1)"an —pn-1p0-1 4 pn=2(n - 1)AP 2 4 ... 4 (-1)" =0.

(19)

According to the Lemma, we have

N=1+£11(n31)"-1'

So, the solution A}, of (18) satisfies
1

1+;(ni1)n-ll

For the minimal singular value o,, of matrix X, we have

2> 82 S
| g 1+%(nf1)nl

Obvicusly, the smaller L is, the greater g, may be. He [6] indicates that
the main factor of the condition number K(A) = o1/0, i8 0. So the definition of
this paper is a reasonable definition. Incidentally, the computation of the condition
number in this paper is much simpler than that of [4].

¥
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3. Application in Control Theory
Suppose the system equation is
X = AX + BU,
and the state feedback control can be expressed in U = KX. Then
X = (A+ BK)X.

If the system is completely controllable, we can arbitrarily assign the poles of the
system. In the case of multi-inputs, K is not unique, so we can make full use of the
surplus degrees of freedom to design robust control system.

Suppose that the prescript poles of the system are A1, Az,-<+,A,. Note A =

diag (A1, A2,-*,An). Then the problem of robust control system design becomes
the following nonlinear programming problem: |
max |YTY| (20)
subject to (A+ BK)Y =YA, (21)
(v, w)=1, i=Ln (22)

where y; 18 the ith column vector of matrix Y.

Since (21) (22) are nonlinear equality constraints, Hlmmelblau [9] points out
that (20)~-(22) is the most difficult kind of nonlinear programming. But equation
{(21) can be rewritten as

AY + BF=YA - (21')
where F = KY . So the problem becomes

max |[YTY|
subject to AY + BF =YA,
(i, %) = 1.

Since (21’) are linear equality constraints, the problem becomes easier than the

original nonlinear programming. Computational examples show that the computing
time of problem (20), (21°), (22) is much more shorter than that of problem (20)-

(22).
When the optimal solution F*,¥* is obtained, the optimal feedback matrix
K*=F{Y°'J

Example 1 [4].
1.38 —0.2077 6.715 -—-5.676 0 D
—.5814 -—-4.29 0 0.675 5.679 0

= X+ u
1.067 4273 —6.654 $.893 1.136 —3.146

0.048 4.273 1.343 -—-2.104 1.136 0
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We assign the eigenvalues as
(A + BK) = (-0.2,—0.5, —5.0566, —8.6659).

The proposed problem is solved by using the flexible tolerance method on IBM~-PC.
Take the initial values as

Y=0 F=0
The optimal solution i1s

—.4243528 —0.1413062 —.5204743 —.7291125
—.9028558 01674664 —.4015174 —.1769179

7| asiseor 420886 —.7or4055 —.3060228 |’
~.4919919 652804 4034852 —.4170504

- ( —~.5852064 .1246379 .02879013 -—.5042462 )
~.6547011 .8269487 .5313507  .01483982

K*___( 064747 —.308957 —.325121  .334544 )
1.038243 577936 319642 —.046510

det [(Y*)T(Y*)] = 0.141545.
In Table 1, the robust indexes obtained by this paper and kautsky et al. [4]
are listed.

Table 1
| Index | Nonlinear The methods of [4]
programming method 0 1] 2/ 3
| YTY | 0.141545 | not 0.105296 | 0.117939 |
K, (A) | 4.755 convergent | 5.191) 5.01109%)
Example 2 [4].
X AN & Bu,

) The valne listad in [4] is 3.32, But the author re—computed the value as equals 5.19.
3) The value listed in 4] is 4.54. But the anthor re—computed the value as equals 5.01109.
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—0.1094 0.0628 0 0 0
1.306 —-2.132 0.9807 0 0
A= 0 1.595 —3.149 1.547 0 :
0 0.0359 2.632 —4.257 1.855
0 0.00227 0 0.1636 -—0.1625
0 0.0638 0.0838 0.1004 0.0063

BT

|

0 O 0.1369 —0.206

) |

—0.0128

We set the eigenvalues equal to (-0.2,—0.5,-1.0, —14
conjugate pair. So A can be written as

- 1), which includes a complex

—0.2 0 0 0 0
0 -0.5 0 0 0
A= 0 0 -1.0 0 0
0 0 0 -1.0 1.0
0 ¢ 0 -10 -10
to avoid complex computation.
The optimal solution is
—.200752 055914 —.852951 -—.086023 .017333
366047 —.741101 273655 174146 —.070746
Y* = 642255 -—~-.5T71679 204050  .446763 —.606369 |,
625816 —.255142 058082 361309 -.593028
—.146869 -.236069 —.391397 -—-.795067 .524714
'YTY| = 0.000476,
o ( 49.3205 108.0142 —226.2659 195.0873 —41.64777 ) |
—23.2589 39.71716 -—65.26995 50.58586 2.25201

For this example, the robust indexes obtained by this paper and kautsky et al. [4]

are given in Table 2.
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Table 2
I Index | Nonlinear The methods of [4]
Programming method | 1 2/3
Kq(A) l 37.09 39.4 66.1

4. Conclusion

Obviously, the robust indexes obtained by this paper are better than those
by [4]. Table 1 also shows that the greater [YTY| is, the smaller K3(A) is. So, the
new condition number of the eigenvalue put forward in this paper is not only simple
to compute but also reasonable. Using the condition number to design the robust
control system can yield a good robust index. But the computing time to search
for the optimal solution by this method is very long because it is difficult to find
an analytic derivative expression of |YTY| for higher order systems, and we have
to use the methods without evaluating the derivatives. So searching other efficient
methods to solve the problem (20), (21’), (22) may be a lot of work to do.

The author is very grateful to Professor Lu Yong-zai and the referee for ging
over the manuscript and giving many useful suggestions.
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