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UPPER LIMITATION OF KOLMOGOROV COMPLEXITY
AND UNIVERSAL P. MARTIN-LOF TESTS *

C.CALUDE I.CHITESCU
( Depariment of Mathematscs, University of Bucharest, Romania)

In this paper we study the Kolmogorov complexity of initial strings in mfinite
sequences (being inspired by [9]), and we relate it with the theory of P.Martin-Lof
random sequences, Working with partial recursive functions instead of recursive
functions we can localize on an apriori given recursive set the points where the
complexity is small. The relation between Kolmogorov’s complexity and P. Martin-
Lof’s universal tests enables us to show that the randomness theories for finite
strings and infinite sequences are not compatible (e.g.because no universal test is
sequential).

we lay stress upon the fact that we work within the general framework of a
non-necessarily binary alphabet.

Preliminaries

Throughout the paper N = {0,1,2,...} will be the set of naturgl numbers.
The integral part of a real number z will be denoted by []. If A is a finite set, then
card A is the number of elements of A. -

For every non-empty sets A and B we shall write f : A — B to depote a
partial function, i.e. a function f : A' — B, where A’ is a subset of A. We shall
consider that A’ is the domain of f and we shall write A'=dom(f). We shall say
that f is undefined at z and we shall write f(z) = oo in case z is not in dom(f).
The graph of f is the set {(z, f(z))|z € dom(f)} C Ax B. Incase f,g: A— B
are two partial functions such that dom(f) C dom(g) and g(z) = f(z) for every
z € dom(f}, we say that g extends f. |

We work with a finite alphabet X = {ay,a2,...,0p}, where p > 2 is a fixed
natural (the binary case p = 2 is the most commonly used). The free mongid
generated by X under cencatenation is X*. Its elements are called strings. The
length of a string z = z123...2, of X" is p(z) = n. The empty string A has length
p. If z,y € X", then we write £ C y in case y = zz for some string z. For every
natural n > 1, put X® = {z € X*|p(2) = n}. The set X" is lexicographically
ordered by a1 < a2 < ... < ap < a1a1 < aja2 <...a18p < ... .
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We denote by X® the set of all sequences * = z123...Zn ..., where z, € X
for all natural n > 1. For such an z and for every natural n > 1, put z(n) =
2122... 2, €X' fye X', y=wv1y2...ym and z € X%, 2 = 5122...2Zs ..., We
shall write yz to denote the sequence y;1¥2...YmZ1%2...Zn ... , and Az = z. For
every V C X*, put VX® = {yz|ly € V,z € X*°}. In case V is a singleton, l.e.
V = {y}, we write y X instead of V. X*°.

For the Recursive Function Theory see [10]. Dealing with computability, we
do not distinguish between N,IN\{0} and X*. A recursively enumerable (r.e.) set
is the domain of some partial recursive (p.r.) function.

A P. Martin-Lof test (M-L test in the sequel) is a {possibly empty) r.e. set
V c X* x (N\{0}) having the following properties :

i) For every natural m > 1, one has Vo4 1 C Vi, where Vi, = {z € X*|(z,m) €
V}. ~
ii) For all natural non-null m and n one has card (X" NVy) < p" ™/(p— 1).
A M-L test having the following additional property :

iii) For every natural m > 1, and for all strings z,y in X* with £ C y and
z € V,, one has y € V,, is called a sequential M-L test (s. M-L test in the sequel).

A (sequential) M-L test U will be called a universal (universal sequential) M-L
test if for every (sequential) M-L test V there exists a natural ¢ (depending upon V
and U) such that Vip4, C Up, for all natural m > 1. For the existence of universal
(universal sequential) M-L tests see (7], [8], [11}, [1] and [3].

The critical level induced by a M-L test V is the function my : X* — N given
by my(z) = max{m € N|z € V,.} in case £ € V1, and my (z) = 0 otherwise.

Let ¢ : X* x N 3 X* be a p.r. function. According to A.N. Kolmogorov [6],
we define the Kolmogorov complexity K, : X* X N 2 N as follows : K (z|n) =
min{p(y)| v € X*,o(y,n) = z} if such y does exist, and K, (z|n) = oo in the
opposite case. Now we can define, for every o as adove, the set V(p) = {{z,m) €
X* x N|K,(x)p(z)) < p(z) — m}. It is readily seen that V (p) is a M-L test (see [1]).
A p.r. function ¢ : X* XN 2 X" is called a universal Kolmogorov algorithm in case
for every p.r. function ¢ : X* x N ~» X* there exists a natural ¢ (depending upon
¢ and ) such that Ky(x|m) < K (z|m)+ ¢ for all z € X* and m € N. Universal
Kolmogorov algorithms do exist (see [6], {1], [4]). Furthermore, for every universal
Kolmogorov algorithm ¢, the M-L test. V (3) is universal (see (2] and [4]).

; Results

We begin with a slightly improved version of a result in [5].
Lemma 1. Let n(1},n(2),...,n(k) be natural numbers, k > 1.The following
asseritona are equivalent :

A) One has

k i
> p T B, (1)

f5=1
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B) One can effectively find k strings 8(1),8(2),...,8(k) in X* with p(s(f)) =
n{i),s = 1,2,...,k, such that

; |
U s(1) X = X, (2)
1=1

Proof. A)= B). We may assume that n(1) < n(2) < ... < n(k). In view of

(1), the unmbers n(1),n(2),...,n(k) are not all distinct. So put n(1) = n(2) =

can = ﬂ(tl) = my < ﬂ(t1+1) = ﬂ(t1-|-2) = .. = ﬂ.(tl-l-tg) = M < ... %

n(tl-l-tz——. . .+tu._1-l-1) = ﬂ(tl-l-tz-i-. : ,+tu_1+2) . ﬂ(tl-l-t:-l-* ; .+tu_1+tu) = W

There are two distinct situations.

First situation. One has t; > p™:. In this case we shall take {s{1}, s(2),...,
s(p™)} to be X™1, in lexicographical order. The remaining strings 8(s) can be
taken arbitrarily with p{s(¢))} = n(s), because one has |

L) s(i) X = X

t=1

Second situation. There exists a natural 2 < A < u such that ¢, -p™™ +13-
p~™agp ity gop ™1 < land iy p ™ 4taepT ™4 A tpop pT TR e pT T 2
1. Multiplying by p~™* one can effectively find a natural 1 < t < t; such that
t1-p ™ +ta-p ™ 4+ ... ty_y-p ™A1 4 t.p ™ = 1. The last equality can be
written as follows :

by p™ATT by p™R T bty - pTR 4 = g (3)
We choose 3(1),5(2),...s(t1) to be the first (in lexicographical order) strings
31

of length m;. We have U s(1) X% = U 2 X, where z runs over the first ¢y -p™+™™1
=1
strings of length my, (in lexicographical order). |
The procedure continues in the same manner. Assume that we have al-
ready constructed the strings s(1),s(2),...,s(t1) (of length my ), s(t1 + 1),8(t) +
2),...,3(t1 + tg) (ﬂf length ﬂ"lg),. , .,S(tl +ts+ ...+ 81 T+ 1),H(t1 + g+ .o F

tic1+2,...,8(t1 +ta+ ...+ ti—y + t;) ( of length my), for 1 < h. Suppose also that
T;

U s(7) X® = U zX %, where A; consists of the first t;-p™*™ ™! 12 pATMIL |+
5=1 TCA; .
t; - p™»~™ gtrings of length m; (in lexicographical order ,and T; = ¢ +t2+... +1;.
In view of (3) it is seen that X™i\ A; is not empty . Let = be the first element (in
lexicographical order) of the set X™\ A;. Then set y as the first (in lexicographical
order ) element of X™i+1~" and s(T;+ 1) = zy. Construct then the next strings of
length m; 4, (in lexicographical order), namely: s(75+2),s(Ts+3),..., 8(Ti+tiy1) =
S(tl +tg+ ...ty (ifs+1< h), or 8(Th-1 + 1),3(Th_1 e 2), . ,B(Th_l + t) =
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T
s(ty +iz+ ... +ta1 t t) (if § = h —1). It 18 seen that U 8(5)X® = X, where
3=1
T =t,+t3+...+th-1+t (again by (3)). So,if k > T, the remaining s(f) (for ¢ > k)
an be taken arbitrarily with p(s(i)) = k(1) and condition (2) will be fulfilled.
B) => A). Again assume that n(1) < nf2) < ... £ n(k) and put H; = {xz ©

k
xn{®)|s(s) c z},1 < i £ k. Condition (2) implies that | J Hi O X"} and this in
i+1
k k .
turn implies that Z card H; > p"¥). This means that Zp"(t)_“(‘) > p“("], i.e.
=1 i=1

exactly (1). 1§
In order to avoid repetitions, we introduce

o0
Definition 2. A p.r. function F ¢ N 5 N is said to be smallsf Z: i

n=0
O0.

Here we accept the convention that for every natural n which is not in dom(F’)
one has p"F(") =0 1

Lemma 3. Let F be a small function and let k be an integer such that F(n)+
k > O for all n in dom(F) . Define the function F + k : dom(F) — N by
(F 4 k)(n) = F(n) + k.

Then, F + k is a small function.

Example 4. a) L. & be in N. The constant function F : N — N given by
F(n)=kforallneNisa small funetion.

b) Take & to be a strictly positive rational, a <1 or « > p. The p.r. function
given by F(n) = [log,n| forn > 1 i a small function. In particular, F(n) = llog,, n]
is small.

Lemama 5. Let g be a small function wath recursive graph. Then one can
effectively find anogther small function G with recursive domain such that

a) The fungtton g extends G.

b) For every n» € dom(G) one has G(n) < n.

c) For every natural k there exists at most one natural n with G(n) =n — k.

Proof. Define the p.r, function G : N > N as follows: G(n) = g(n) if
g(n) < nand m—g(m) # n — g(n) for every natural m < n, G(n) = oo otherwise.
Since ¢ has a recurgjve graph, it follows that the conditions in the above definition
are recursive and G satisfies A), b), c). It remains to prove that G has a recursive
domain and

Z p"G(") = 0O. (4)

n=0

To this aim define the sets
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A:{nEN] g(n)Sn},
Ak:{nEN| y(n):n—k}, k € N.

oo
Notice that A = U A; and that the sets A are pairwise digjoint. Because g 1s

k=0
small and Z p79(") = o6 one haa-z p_g(") = oo, which means that
ncN\A ncAd
z Z P—y(n) = 00O, (5)
keB nEA,

where B = {k € N|A; # 0}.

. For every k in B denote by n; the smallest element of 4;. Then dom(G) =
{ni|k € B}. So, G(n) < oo iff G(n) < m for some m < n. Accordingly , dom(G) is
recursive. We can write (5) in the form

a+ b= oo, (6)
where a = Z Z p“’(") and & = Z p"”("*) = Zp_g("‘).
keEB neAg\{ni} keB n=0

Caution ! The sum over the empty set 1s null.
For every k in B one has

Z p—g(n) . Z p—(ﬂ-k)g i ph—n

nEA;\{nk} ncAz\{ny} n=ng+1
=p*™/(p— 1) = p~d™/(p - 1).

It follows that

a< Y59 /(p— 1) = b/(p - 1),
keB

From (6) we deduce that oo = a + b < b+ b/(p — 1); hence b = oo, which is
precisely (4). E |

Proposition 6. Let g be a small function with recursive graph. Then we can
effectively construct a recursive function f : N — X such that for every sequence
z in X*® the set A(z) = {n € N|f(n) = z(p(f{n))) and p(f(r)) = g(n)} is infinite.

Proof” Given g, construct G according to Lemma 5. Because dom{G) is
recursive, we can define f by the following procedure:

Stage 0.
' n
> p V) > 1,}-

=0
2. Extract from the vector (G(0),G(1),...,G(ng}) all finite components and

call them (G(i(0)), G(i(1)), .. ., G(i(ky))),$(0) < (1) < ... < i(ko).

1. Compute ng = min{n €N
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4. Construct ko strings 8(0),(1),.--, 8(ko) in X* such that o(s(5)) = G(#(3)),0 £
; < k,, and for every z In ¥ there exists a natural 0 < j < ko satisfying 8(j) =

ko
z{p(s(7))). This1s done by Lemma 1, because of the choice of np : z p"Gtim] > 1.
/=0

3—
4. Put f(i(5)) = s(s) for all natural 0 < 7 < ko, and f(m) = A for every m in

{0,1,..., ﬂD}\{“(O):i(l)i $ii :i(kﬂ)}'

Stage q+1.

1. Compute n,4; = min{n € N|n > n, and 5_: p~GU) > 1}.

j=ng+l

9 Extract from the vecter (G(ng+1),G (ng +2),...,G (ng+1)) the finite com-
ponents, thus obtaining the vector {G(s(kq + 1)),G(i(ky+2)), - - - G (8(kq+1))),3(kq +
1) < i{kq + 2) <...< l'(kq+1).

3 Find the strings s(k; + 1),8(kg + 2),...,8(kg41) in X* having p(s(7)) =
G(i(5)) for j = k1 + 1, kg + 2....,kg41, such that for each z in X% there exists a
natural kg + 1 < 7 < kg1 with s(7) = z(p(s(5)))-

4. Define f(i(5)) = s(y) for all 5 in {k, +1,kq 2. ...,kg41}, and f(m) = A
for min {n;+1,n,+2,... ngr1 \{5(kq + 1),8(kg + 2),..-,1(kg+1)}-

| The procedure above defines a recursive function f. For every in X% the
set A(z) is infinite because dom(G) is infinite and G 1s small. B

Proposition 7. Let g be a small function with recursive graph and let
v : X' N 2, X* be a universal Kolmogorov algorithm. Then we can find a
natural ¢ ( depending upon g and ¢) such that for every Z in X% there exist in-
finitely many n in dom(g) having the property

Ky(z(n)|n) < n—g(n) +e ' (7)

Proof. Given g we construct G like in Lemma 5. With the aid of G we
construct the recursive function f: N-X° having the property that for every
sequence T in X*° the set A(z) = {n € N|f(n) = z(p(f(n))) and o(f(n)) = G(n)}
is infinite ( we have made use of proposition 6). Now we can define the p.r. function
o : X*xN = X* asfollows o(y,n) = f(n)y if G(n) = n—ply), and oy, n) = o0
otherwise. _

. Take a sequence £ = TjZ2---%n--- 1N ¥ Notice that the set A'(z) = {n €
Niz(p(f(n)) = f(n) and o(f(n)) = G(n) < n} is infinite because A(z) defined
above is infinite and the set {n € N|f{(n) = z{p(f(n))) and o(f(n)) = G(n) = n}
has at most one element according to Lemma 5 For every n in A'(z) we construct
the string ¥(f,n) = Zu+1Tus2-- - Tutn-G(n)> where u = p(f(n)) = G(n). We have
o(y(f,n),n) = f(n)y(f,n) = z(n), which shows that K (z(n)|n) < plyl/f, n)) =
n — G(n). Kolmogorov’s theorem furnishes a natural ¢ such that Ky (z(n)|n) <
Ko(z(n)n) +c<n— G(n)+c=n-g(n)+c for every n in A'(z) C dom(g). B

Our next purpose is to get rid of the constant ¢ which appears in (7). To this
alm we prove




No. 1 Upper Limitation of Kolmogorov Complexity... 67

Lemmma 8. Let F be a small function with recursive domain. Then, we
can effectively find a small function F* with the same domain as F and having the
following supplementary property: for every natural ¢ there exssts a natural N, such
that F*(n) > F(n) + ¢ for alln € dom(F) and n > N..

Proof. Let r : N — N be a recursive strictly increasing function such that
dom(F) = {r(1)|t € N}. Put u(n) = F(r(n)) for every natural n. Then

S = o )

n=0

Ih suiely Hi{8) we can effectively find a recursive strictly increasing function A : N —

A(i+1)
Z p—-u{n) > Pi+1 (9)
n—=A(1)+1
for all natural + . Now we can define the recursive function v : NN — N by
v(in) =u(n)+¢+1,if A(¥)+1 < n < A(F+ 1). From (9) it follows that
A(i+1)
>, ptM>1 (10)
n=A(¢}+1
From (10) we get
) o0
z p~*(") = oo
n=0

The function F* is defined by F*(r(n)) = v(n) for all natural n. §
The following theorem is the basic result of the present paper.
Theorem 9. Let F be a small function with recursive domain and let ¢ : X" X
N 3 X* be a universal Kolmogorov algorithm. Then, for each sequence z in X,
the inequality
Ky(z(n)in) < n — F(n)

holds for infinitely many n in dom(F).

Proof. With the aid of F we construct the small function F* given by Lemma
8. Applying Proposition 7 to F* instead of ¢ we get a natural ¢ (depending ultimately
upon F and +) such that the set H(z) = {n € N|Ky(z(n)|n) < n — F*(n) +c} is
infinite for every z in X*°. For this ¢ we can find, using Lemma 8, a natural N,
. such that F*(n) > F(n) + ¢ for all n > N, in dom(F). It follows that for every z in
X the set T'(z) = H(z) N {n € dom(F)|F*(n) > F(n) + c}is still infinite and for
every n in T(z) one has Ky(z(n)|n) < n— F*(n)+c<n— F(n). B

In the sequel we shall use Theorem 9 to derive a series of results concerning

M-L tests.
Corollary 10. Let ¥ : X* XN = X* be a universal Kolmogorov algorithm.
Then ¢ has the following properties:
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(P) Assume F is a small function taking at most finitely many zero values and
having a recursive domain . Then, for every z in X, one has (z(n), F(r)) € V(¢)
for infinitely many natural n.

(PP) Assume k > 1 is natural. Then, for every z in X, one has (z(n), k) €
V (¢) for infinitely many natural n.

Proof. We must prove only (P), because (PP) follows from (P) taking in
particular F' : N — N, F(n) = k for all natural n.

Define the small function G = F + 1. According to Theorem 9, for every z In
X*one has Ky(z(n)|n) <n—G(n) <n- F(n) for infinitely many natural n. This
means that for these n one has (z(n), F(n)) € V(¢). B

Theorem 11. Let U be a universal M-L test. Then U has the following
properties:

(PU) Assume F iz a small function with recursive domain taking at most
finitely many zero values. Then, for every z n X% one has {z(n),F(n)) € U for
infinitely many natural n.

(PPU) Assume k > 1 is natural. Then, for every z in X one has x(n) € Uy
for infinitely many natural n. |

Proof. Property (PPU) follows immediately from (PU), as in the proof of
Corollary 10.

To prove (PU), consider a universal Kolmogorov algorithm and put V' = V' (¢).
The universality of U yields a natural ¢ such that VF(n)+e C Ur(n) for every n
in dom(F) , F(n) > 0. Since F + ¢ is small, we can use Corollary 10 to show
that (z(n), F(n) +c) €V for infinitely many natural n in dom(F’), which implies
(z(n), F(n)) € U, for the same n. §

Theorem 11 can be reformulated as follows:

Theorem 12. Let U be a universal Kolmogorov algorithm and let F be @ small
function with recursive doman. Then, for every z in X one has

my (z{n)) > F(n)

for infinitely many n in dom(F).

In particular, for all z in X* and all natural k one has my(z(n)) = k for
infinitely many natural n. 1

Comments. 1) Theroem 11 contains Corollary 10 because V () is universal
whenever ¢ is a universal Kolmogorov algorithm (see (2], [4]).

2) Every p.r. function with recursive domain has a recursive graph, but the
converse is false. Working with p.r. functions instead of recursive functions as In
the seminal paper [9] (see also [5]) we can obtain more precise results. For instance,
using the small function F(n) = [log, n] defined only on the set P of primes, one
can deduce from Theorem 9 that Ky(z(r)|n) < n — [log, n] for an infinity of primes

n. Here we have made use of the fact that Z nl=00. 1
ncP
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Theorem 13. Let V be a 8. M-L test. Then, for every natural m > 1, one has
Vi X £ X5, |

Proof. A sub-tree is a non-empty set S C X* such that for every 2z € §
one has A(z) = {y € X*|ly € z} € S. Every z € X*® puts into evidence the set
B(z) = {z(n)in € N,n > 1}UU{A}. Notice that B{z) is an infinite sub-tree which
18 linearly order with the order relation given by C. According to [10] we have the
following result, called Konig’s Lemma : For every infinite sub-tree $ C X* there
exists an z in X such that B(z) C S.

Passing to our proof, it will be sufficient to show that V; X # X*°, To this
alm, put S.= X*\Vy,S50 = {A} and, for every natural n > 1, put S,, = X*nN S. We
shall see that S is an infinite sub-tree.

Indeed, for every natural n > 1, one has card (X"nNV;) < p*~1/(p— 1), which
implies that card (S,) = p"— card (X" NV3) > p" —p" 1/(p—1) > p* 1. So § is
infinite.

In order to see that S is a sub-tree, pick some z € S and show that A(z) C S.
Assuming the contrary, let y be in A(z) such that y is not in § and put n = p(z) > 1.
On the other hand y ¢ S, i.e. y € V;, which contradicts the fact that z ¢ V; because
zDy.

Applying Konig’s Lemma to the infinite sub-tree S, we can find a sequence z
in X* with B(z) c S. This implies that z ¢ V; X*°. |}

Corollary 14. No universal M-L test is a 8.M-L test. In particular, for every
universal Kolmogorov algorithm 1, the M-L test V(1) is not a s.M-L test.

Proof. Let z be in X*®. According to Theorem 11, z{n) € U; for at least one
natural n > 1 ( in fact, for infinitely many n), which means that z € U/; X*°. So,
Uy X = X, which shows that U cannot be sequential (see Theorem 13). |

Remark. Corollary 14 points out that Martin-Lof theories of randomness for
finite strings ([7],(8],[1]) and infinite sequences ([7],[8],[12],[5]) are not compatible.
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