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Abstract

This paper discusses the relationship between canonical maps and generating
functions and gives the. general Hamilton-Jacobi theory for time—-independent
Hamiltonian systems. Based on this theory, the general method-the generating
function method—of the construction of difference schemes for Hamiltonian sys-
tems is considered. The transition of such difference schemes from one time-step
to the next is canonical. So they are called the canonical difference schemes.
The well known Euler centered scheme is a canonical difference scheme. Its
higher order canonical generalisations and other families of canonical difference
schemes are given. The construction method proposed in the paper is also
applicable to time-dependent Hamiltonian syatems.
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. * §0. Introduction

As is well known, Hamiltonian systems have many intrinsic properties: the
preservation of phase areas of even dimension and the phase volume, the conserva-
tion laws of energy and momenta and other symmetries. The canonscity of the phase
flow for time—independent Hamiltonian systems is the most important property. It
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ensures the preservation of phase areas and the phase volume. Thus we can hope
that preserving the canonicity of transition of difference schemes from one time step
to the next is also important in numerical solution of Hamiltonian systems. The
first author in [1] has proposed a notion—canonical difference schemes. Just as its
name implies, the transition of such difference schemes is canonical. In this pa-
per, we give a general method —generating function method—for the construction of
canonical difference schemes via generating functions. We first establish the rela-
tionship between canonical maps and generating functions and then give the general
Hamilton-J acobi theory for time-independent Hamiltonian systems. Given a matrix
a € CSp(Ln, Jin), then canonical maps and generating functions can be determined
each other under so called transversality conditions. Moreover, to the phase flow
of the system with Hamiltonian H there corresponds a time-dependent generating
function which satisfies the Hamilton-Jacobi equation related to the given « and
H. If the Hamiltonian function is analytic, then the generating function can be ex-
pressed as a power series in ¢, and the series can be determined recursively(Theorem
20). So truncating or approximating it in some way, we can get certain canonical
map which approximates the phase flow of the Hamiltonian system. Fixing t as
the time step, we obtain difference schemes. In general, such difference scheme is
implicit.

In Sec. 1, we review some notions and facts about symplectic geometry which
can be found in the standard texts, e.g., [2], 3], [4]. Sec. 2 concerns linear fractional
transformations. This theory is important for next sections. In Sec. 3, we discuss the
relationship between linear canonical maps and generating functions. It shows the
outline of our idea. Sec. 4 is the continuation and deepening of section 3. It gives the
relationship between nonlinear canonical maps and generating functions. In Sec. 5,
we give the general Hamilton Jacobi theory. With the aid of the theory, generating
functions can be represented as power series in t. It makes the preparation for
constructing canonical difference schemes. In Sec. 6, it shows the general method for
the construction of canonical difference schemes. Many canonical difference schemes,
such as Euler centered scheme, 4-th order centered scheme, staggered explicit scheme
and others are presented.

We shall limit ourselves to the local case throughout the paper. Moreover,
in this paper we use the older terminologies such as canonicity, canonical maps,
etc., in stead of the modern ones such as symplecticity, symplectic maps, etc. So the
canonical difference schemes can also be called synonymously or even more preferably
symplectic difference schemes.

§1. Preliminary Facts about Symplectic Geometry

We now review some notions and facts of symplectic geometry [2],{3],[4].

Let R2” be a 2n-dim real linear space. The elements of R?" are 2n-dim column
‘vectors z = (Zl, "y 2pyZn4l,c jzin)r = (Fl: "y Pni¥1," 7", qﬂ-)T- The Euperﬂcript’
T represents the matrix transpose.
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A symplectic form wy is a bilinear form defined by the anti-symmetric matrix
K € GL(2n) as

wi(z1,22) = 2‘?1{33, for all 21,20 € R*™. (1)

The symplectic form wy,
0, In

; for all 2,20 € R¥™, (2)
"‘In. On

wy(21,22) = 2§ J 22, J = [

where I,, resp. Oy, is the nXn unit resp. zero matrix, is called the standard symplectic

form of R?*", briefly denoted by w.
Every 2n X n matrix

A
A= [ ' ] € M(2n,n) ofrankn, Aj, Az € M(n),
Az

defines an n-dim subspace {A}, spanned by its n column vectors. Evidently, {A} =
{B} iff 3P € GL(n) such that

, A P B,
AP = B, t.e., = ;
AsP B

An n-dim subspace {A} is called K-Lagrangian if
wi(z1,23) = 2] K22 =0, for all z;,2; € {A}.
Evidently, {A} is K-Lagrangian iff
ATKA=0.
Define
Sp(Ky, K2;2n) = {M € GL(2n)| MTK.M = K1 };
CSp(K, K3;2n) = {M € GL(2n)| MTK,M = uK,, for some u = u(M) # 0};
Sp(K;2n) = Sp(K,K;2n)={M € GL(2n)| MTKM = K};
CSp(K,; 2;1) = CSp(K, K;2n) |
— {M € GL(2n)]| MTKM = pK, for some u = p(M) £ 0}.
Sp(K;2n) and CSp(K;2n) are groups and called the K-symplectic group and the
conformal K-symplectic group respectively. Sp(2n) = Sp(J;2n) and CSp(2n) =

CSp(J;2n). They are usually called the symplectic group and the conformal sym-
plectic group respectively.
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Proposition 1.
M e Sp(K1,K:;2ﬂ) iff M~ e SP(KQ,K1;2H).-

M € CSp(K, Ka;2n) iff M~! € CSp(K3, Ky; 2n).
Proposition 2. Let Mp € Sp(Kj, Ks;2n). Then
Sp(K1, K3;2n) = Sp(K2;2n) - Mo = Mo - Sp(K1;2n), (3).
CSp(K;, K2;2n) = CSp(K2;2n) - Mo = Mo - CSp(K;; 2n), (4)

where _
Sp(Ka;2n) - Mo = {M - Mo|M € Sp(K2;2n)}

and others are similar.

§2. Linear Fractional Transformations

Ay B :
Definition 3. Let a = * 1 € GL(2m). Define a linear
Co Da
fractional transformation
0, : M(m) — M(m), (5)
M — N =0o(M) = (AaM + Bs)(CaM + Py
under the transversality condition
|ICaM + Da| # 0. (6)
. A* B<
Proposition 4. Let a € GL(2m). Denote = [ } . Then
c* D%
|ICaM + Do) #0 i |IMC® — A%| # 0, (7)
|AaM + Bo| #0 i |B* — MD?*| #0. (8)

Proof. From equations

R R
. Dy C" D= c* D° Cy Da
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ALA® + B,C® = A%A, + B°Cy = I,
CaB® + DaD®* = C*By + D®Dy = I,

(10)
AaB* + B,D* = A°B, + B*D, = 0,
CLA% + DaC® = C*A, + D°C, =0,
we obtain the identities |
I -M || A B*| | A*-—MC* B*-MD®
C. D, ce Do 0 I ’
I -M|[a* B=| [a4*-Mc* B*-MD"
X, 8, ||o= p*| | 2 0 |
In addition,
1 -M| [rol[1 -M
C, D, Co I||0 CaM+ D, |
1 M| [1 o] -Mm
A. B, Ae I1]]0 AM+B, |
Taking their determinant, we get
CoaM + D, |a|™! = |A* - MC?|,
5 AaM + B, |la|™! = (-1)™|B* — M D*|.
Q.E.D.
Proposition 5.  The linear fractional transformation ¢, in (5) can be
represented as
oa(M) = (MC* - A%)"1(B* — MD?). (11)

Proof. By (7), (11) is well defined. Therefore we need only to verify the
identity

(MC® — A%)"Y(B* — MD*) = (AaM + B,)(CaM + Do),
(B* ~ MD*)(CaM + Dy) = (MC® — A®)(AsM + Ba). (12)

Expanding it and using the conditions (10), we know that (12) holds. Q.E.D.
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Proposition 6.
(C*N + D*)(CaM + D,) = I, , (13)
hence
|C*N + D*| #£0 ift CaM + Dol #0, - (14)

where N = 0o(M). So under the transversality condition (6) 0o has an inverse
transformation ;! = 04-1.

M =g, -:(N) = (A®N + B*)(C*N + D*)~} (15)
= (NCy — Aa) (B — NDa). (16)
Proof.
(C*N + D*)(CaM + D,)

— (C*(AaM + Ba)(CaM + Do)~ + D*)(CaM + Do)
= (C®Aq + D*Ca)M + C®B, + DD,
=1 (by(10)).

This is (13). In Prop.4, substituting a~! for « and N for M, we get

IC*N + D% #0 iff |NCa—Aa|#0.

Hence the equation
N = (AaM + B,)(CaM + %

is solvable for M and the solution i1s
M = (NCq — Ax) }(Ba — NDa).

This is (16). (15) can be got from (11). Q.E.D. |
Putting together the above stated, the following four transversality conditions
are equivalent mutually:

ICaM + Da| #0 (17.1)
* IMC* — A% #0 (17.2)
ICe*N + D*| #£0 (17.3)
|NCE = Aal # 0, (17.4)

where

N = 0a(M) = (AeM + Bo)(CaM + Da) ™!
M = 0,1(N) = (A*N + B*)(C*N + D*)~".
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§3. Linear Symplectic and Linear Gradient Maps
and Generating Functions

In this section we study linear fractional transformation relating the symplectic

group Sp(2n) and the space Sm(2n) of symmetric matrices of order 2n.
Consider the two different symplectic forms on R**, the natural symplec-

' 0 I .
tic form J4n = [ o ] and the natural product symplectic form Jyn =

_Izn D
J 0 ' i "
i . Denote R = (R*", J,,.), R = (R*", J4,).
0 —Jsn

X
A 2n-dim subspace { X} = { Xl } of R¥ X3, Xo € M(2n), is J¢n-Lagrangian
2
if
XTJ‘HX o 0,
i.e.,
XTx, - XTXy =0 or  XiXse€Sm(2n).
. X1 : ;
We call such 4n X 2n matrix X = % |* according to Siegel [8], a symmetric
A2

, _1 X1 N
pair. If, moreover, |Xz| # 0, then X; X" = N € Sm(2n) and . = i I
2
Y;

Similarl}:, a 2n-dim subspage {Y} = { v
2

} is J4,-Lagrangian if

YrJiY =0,

1.e., |
YlT J 2nY1 e YzT J 2nY3 .

Y;
The 4n X 2n matrix ¥ = [ " is called a symplectic pair. |Yz| # O implies

. Yz
il [ M
YIY;]' =MEe Sp(2n) and { ; } = { }
Ax B, . = :
Theorem 7. a = € GL(4n) carries every Jyn-Lagrangsan
Cu Da "

subspace into a J4anhgrﬁnginn subspace if and only ¢f o € CSp(f;,,, Jan), t-2.,
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ol Jgnoe = pdan,  for some p = p(a) # 0. (18)

Proof. “if” part is obvious, we need only to prove “only if” part.
Taking oo € Sp(Jan, Jin)(it always exists), by Prop. 2 we have

Csp(j:ln: Jin) = CSp(4n) - ao.

Therefore it suffices to show that if a carries every Jy,- Lagrangian subspace into
Jun-Lagrangian subspace then o € CSp(4n), i.e.,

ol Jypoe = pJan, for some pu # 0.

I
il By assumption,
O2n

x=[ 2 2 ]a]- | %]

is also a symmetric pair, l.e., ATC, — CT A, = 0. Similarly, BID, - DTB, =0.
S
I

N HE Py

dre also symmetric pairs, Le.,

1° Take the symmetric pair X = [

20 Take the symmetric pairs X = [ ] , § € Sm(2n). Then

0 = (aX)TJin(aX)

0 I|| A:S+B
= (s7 AL + BE,s7CE + DY) wmre

= S(ATCa — CT Ag)S + S(AL D, — CT Ba)
_(DIAa = BEC.,)S + BED., - DEBH
= S(AT D, — CTB,) — (ALD, -~ CIB,)TS, VS €8m(2n).
Set P = ATD, — CTB,. Then the above equation becomes

sP=PTS, VS e Sm(2n).

It follows that P = ul, i.e., .
ATD,-ciB,=ul
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So

Ca Dn "-I 0 Cu Dﬂ
_ | AZCa—CTA, AID,-CTB,
BiC,-DYA, BYD,- DIB,

0 I
=p
-1 0

a € GL(4n) implies 1 # 0. Q.E.D.

T

= pJyn.

+ § Bﬂ
Remark 8. The inverse matrix of « is denoted by a~! = [ 2‘: - ] . Then

by (18), we have
A® = p~lyCT, B% = —u~1J AT,
Ce=-u~1JDT, D=y 1JBL.
Definition 9. A linear map 2 —» 2= g(2) = Mz resp. w - & = f(2) =
Nw : R™ — R?" is called a canonical resp. gradient map if M € Sp(2n) resp.

N € Sm(2n).
For a linear map z — 2 = g(z) = Mz : R™ — R™, the graph of g,

I‘,={[f] cR¥™| ?=g(:z)=Mz}

M

is an m-dim subspace of R?™ and T' = { :

o ,
vectnrsuf-[ y ] |

Proposition 10. The graph I'; of a linear canonical map g(z) is a Ty
Lagrangian subspace. The graph I'; of a linear gradient map f is a J4,-Lagrangian
subspace.

}, i.e., it is spanned by the column

Aa B
Ca Dg

BH S H .

Let a = [ ] € CSp(Jin, Jan). It defines linear transformations

ilEl,
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ﬁ-:AaE‘I‘ Baz, E': Antﬁ'l' Baw,

(21)
w=CqaZ+ Daz, z— C* + D%w.
Aa Bﬂ o
a Da

and M satisfies (17.1) iff N = 0o(M) € Sm(2n) and N satisfic. (17.8). That s, the
linear fractional transformation a, : {M € Sp(2n) | |CaM + Da| # 0} — {N €
Sm(2n) | |C®N + D*| # O} is one to one and onto.

Proof. By (17), we know |CoM + Dg| # 0 iff |C*N + D?| #0.

“only if” part. The map z —+ £ = g(z) = Mz: R?"® —» R32" is a linear canonical
map. So its graph I'; is & Jun-Lagrangian subspace. Since a € CSp(.ﬁn, Jen), by

M
Theorem 7, a(T',) is Jur-Lagrangian. Notice that I'; = { }

I
A, B, M A.M + B,

afl'y) = | — .
c. D, || 1 CoM + Da

By assumption, |CaM + Dg| # 0. Therefore

A )={ (AaM + Bo)(CaM + Do) }= { oa(M) }

1 I

and it is Jy,-Lagrangian. That is, N = 0,(M) is symmetric.
Substituting o~ ! for a and noting a~! € CSp(Jm, j;,,), we can get similarly
the “if” part. Q.E.D.
Thearem 12, Let a € CSp(f,.n,J.m). Let 2 — 2 = g(z) = Mz be
a linear canonical map and M satisfy (17.1). Then there exists a hnear gradient
ap w — # = f(w) = Nw and a quadratic function—generating function—¢(w) =
;‘wTN w(depending on a and g) such that

1. f(w)=Veé(w); | -~
2. Agg(r)+ Baz = [(Cag(2) + Daz) (23)
= V$(Cag(2) + Daz),  identically in z;
3. N =aa(M)=(4aM + Bo)(CaM + Da)™'; (24)
M = go-1(N) = (A*N + B*)(C*N + D*) 7%,
4 Ty=a(l,), T,=a"1(Ty), (25)

where V6 = (dor, s Pusn)Ts S = (Buoss=**»Pusn)» 50 Vo = (60)7.
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Proof. The image of T', under a is

w
a(l'y) = { [ ] ER™ = A,Mz+ Byz,w =C Mz + D,,z} ;
w

By assumption, [CaM + Dy| # 0, 80 w = (Co M + Dy )z is invertible and its inverse
i8 2= (CaM + Do) 'w. Set @ = (AqM + Bo)(CoM + Dy)'w = Nw = f(w). By
Theorem 11, f(w) is a linear gradient map. Obviously, ¢(w) = 1 wT Nw satisfies
(22).

From the equation

N — (AgM+ Bn](CﬂM.'I' Dﬂ)ull
1t follows that |
AaM + By = N(CaM + Dy,).

So
AeMz + Boz= N(CaMz+ Dyz), VzeR™,

l1e.,
Aag(z) + Baz = f(Cag(z) + Daz), identically in .

=)
Since I'y = \
I
| B | | Pl
Cs D, I CaM + D,

1 »
|CaM + Dg| # 0 implies (I',) = { " } =Ty. Q.E.D.

Theorem 13. Let a € CSp(Jin, Jin). Let $(w) = $wT Nw, N € Sm(2n)
be a guadratic function, f(w) = V¢ = Nw its induced Imear gradient map and N
satisfy (17.8). Then there exists a linear canonical map z — 2 = g(z2) = Mz such
that

1. A%f(w)+ B*w =g(C*f(w) + D*w),  identically in w;
2. M=0.y(N) = (AN + BYEN + D7)

N = 0o(M) = (AaM + Bo)(CaM + Dy) ™Y
3. Ty=a"!(Ty) Ty=a(F,).
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The proof is similar to the one of Theorem 12 and omitted here.

§4. General Canonical and CGradient Maps and Generating Functions

Definition 14. A map z — 2= g(z) . R2" —» R2" is called a canonical map
if its Jacobian M(z) = gs(2) € Sp(2n) everywhere. A map w — &= f(w) : R™ —
R3" is called a gradient map if its Jacobian N (w) = fu(w) € Sm(2n) everywhere.

Definition 15. An m-dim submantfold U of (R*™,K) tsa K -Lagrangian
submanifold if its tangent plane T.U at z 18 a K-Lagrangian subapace of the tangent
space T,R2™ to R*™ at z for any 2z € U.

Proposition 18. The graph I'y of a canonical map z — z=g(z) iz a Tga
Lagrangian submanifold of R4". The graph I'y of a gradient map w — i = f(w) is
a Ju,-Lagrangian submanifold of R,

Theorem 17. Let o € CSp(Jun,Jin). Let z = 2 = g(z) : R¥* — R be
a canonical map with Jacobian M(z) = g«(2) € Sp(2n) satisfying (17.1) in (some
neighborhood of) R3™. Then there ezists a gradient map w — @ = f(w) in (some
neighborhood of) R*"* with Jacobian N (w) = fu(w) € Sm(2n) satisfying (17.8) and
a scalar function —generaiing function—¢{w)(depending on o and g ) such that

1. f(w)=Vé(w); (26)
2.  Aag(2) + Baz = f(Cag(2) + Da2);

(27)
= Vé(Cag(2) + Daz), identically in 2
8. N = 0a(M) = (AaM + Ba)(CaM + Do) ™13 (28)
M = g —1(N) = (A*N + B*)(C*N + D*)7%; |
4. Ty=a(ly), Ty=a"'(ly) (29)

Proof. Under the linear transformation o, the image of I'y 18

w

a(lg) = { [ . ] e R i = Aqg(z) + Baz, w= Cag(2) + D.,z} ;

L

Since [';i8 a Ji.-Lagrangian submanifold and a € CSp(J4n, Jan), the tangent plane

of a(T,)

A M(z) + Ba

C.M(z) + Dq
is 8 Jy,-Lagrangian subspace. So afl',) is a J.,-Lagrangian submanifold. 'By As~
sumption, |CaM + D.| # 0, so, by the Implicit Function Theorem,
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w = Cqag(z) + Daz (30)
is invertible and its inverse is denoted by z = z(w). Set
® = f(w) = (Aag(x) + Bat)|smsiu) = Act(2(w)) + Baz(w).
Obviously, such f(w) satisfies the identity
Ang(z) + Byz = f(Cag(z) + Daz).
The ja.cubian of f is

Nw) =fow)= 30 =528 =52 (32)"
= (AaM(2) + Bo)(CaM(z) + Do)~ = 0o(M(2)).

By Theorem 11, it is symmetric. So f(w) is a gradient map. By Poincare Lemma,
there exists a scalar function ¢(w), such that

f(w) = Vé(w).
In addition,

Iy = { [ j ] eR™ | & = f(w) = Aag(z(w)) + an(w)} = o(T,).

Q.E.D.

Theorem 18. Leta € CSp(f4,.,J4n). Let ¢(w) be a scalar function and
w — # = f(w) = Vo(w) be its induced gradient map and N{w) = fu(w) = ¢duw(w),
the Hesstan matriz of $(w), satisfy (17.8) in (some neighborhood of) R**. Then

there exists a canonical map z — Z = g(z) with Jacobian M(z) = g.(z) satisfying
(17.1) such that

1. A% f(w) + B*w = g(C* f(w) + D*w), tdentically sn w;
2. M =0¢,-1(N) = (A*N + B*){(C*N + D*)71;
N = 0,(M) = (AaM + B,)(CaM + Do)
3. L, =a!}(Ty), T;=a(ly).
§5. Generating Functions for the Phase Flow of Hamiltonian Systems

Consider the Hamiltonian system
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T e sk st st S o
dz _ JLIVH(s), z€R™, (31)

where H(2) is'a Hamiltonian function. Its phase flow is denoted as g*(z) = g(z,t) =
g (z,t), being a one-parameter group of canonical maps [2,3], i.e.,

go — identity, gtl"'t’ — gtl o gt’

_and if 2o is taken as an initial condition, then z(t) = g*(2o) is the solution of (31)
with the initial value 2zp.

Theorem 19. Let o € CSp(Jin, Jan). Let z — Z = g(2,t) be the phase
flow of the Hamiltonian system (81) and Mp € Sp(2n). Set G(z,t) = g(Moz,t) with
Jacobian M(z,t) = G4(z,t). It is a time-dependeni canonical map. If Mo salisfies
the transversality condition (17.1), i.e., -

then there exists, for sufficiently small [t| and in (some neighborkood of) R, a
time-dependent gradient map w — @ = f (w,t) with Jacobian N(w,t) = fulw,t) €
Sm(2n) satisfying the transversality condition (17.8) and a time-dependent gener-
ating function ¢, g(w,t) = ¢(w,t) such that

1. f(w:t) = Vtﬁ(tﬂ,t); (33)

2, aa?ﬁ = —uH(A*V¢(w,t) + B*w), - (34)

3. A, G{z,t)+ Baz = f(CaG(2,t) + Daz,t) (35)
= V¢{CaG(2,t) + Daz,t),

N = 0o(M) = (AaM + Ba)(CaM + Do), (36)

M = o,-1(N) = (A®N + B*)(C®N + D*)%.

(84) is the most general Hamilton-Jacobs equation for the Hamiltonian system (31}
and the linear transformation «.

Proof. Since g(z,t) is differentiable with respect to 2 and t, se is G(z,1).
Condition (32) implies that for sufficientlly small |t| and in some neighborhood of
R’", - |

ICaM(2,t) + Dol # 0. (87)
Thas by Theorem 17 there pxists 3 time—dependent gradient map @ = f{w,t) such
that it eatisfies (35) and (36). f
Set

ﬁ("-’f t) = —pH(Z)li-a0d(w )+ B0

- (38)
= —uH (A% {w,t) + B®w). |
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Consider the differetial 1-form

wh = E Widw; + H(w,t)dt. (39)
i=1 % I —
et oH
?_jl S, o T dw.-+i_zl a7 dt A dw, +; S Wi N dt o
i — p— o 40 .
o; O ow; OH
= E (atUj awt) dw; A dw; + E ( atw) dt A dwg.

Since N(w,t) = fy(w,t) = 3%/ dw is symmetric, the first term of (40) is zero.
Notice that Z = G(z,t) = g(Mpz, 1),

dz d Mtﬂ t) = JFIVH(G(2,1)). - (41)

So G(z,t) is the solution of the following initial-value problem
£ = J-1VH(3),
E(U) = Moz .

Therefore from the equations

= AaG(2,t) + Boz, w=C,G(z,t)+ D,z,

it follows that
div

dw

ks -1 = aw _ Ty
% A, J "V H(%), 5 CoJ "VH(Z).
Since
Jdw dw ot ot
~Jdwdt T8t

ﬂ%iﬂ“;

= (A - §2C,)I 1V H(2).
On the other hand,
i s v & ¥
VelH(w,tl) = (H.,{w,t)) ( H-- (A“ g B"))
. _,J(Bfﬂ‘ +(§2)T A“T) VH()
= (AaJ ™1 ~ g%CnJ‘I)VH(E‘) (by (19) and N € Sm(2n})
_ 92

LY

So dw! = 0. By Poincare Lemma there exists, in some neighborhood of R¥ntl 5
scalar function ¢, g(w,t)}, such that

- w! = Gdw + Hdt = dpo g (w,t),

"
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e —————— e

ie.,

f(lﬂ,t) = vﬂ¢ﬂ.ﬂ(wi t):
£ ¢ = —uH(A"Vudan(w,t) + B*w). Q.E.D.

Examples of generating functions:

0 0 _In 0
L. 0 0 O .
(I) a = . y = 11 M0=J1 |CaM0+Da| #01
o 0 0 I
0 I, 0 O
q : -~
w =[_ﬁ], ¢ = $(q,3,t);
g

o = -P]=[¢q]’ — _H _
[71-{5] 4o

This is the generating function and H.J. equation of the first kind 3].

o 0 -I 0
0 ~1I 0 O
() o = " | pu=1, My=I, |CaMo + Dal| #0;
0 O 0 I,
I, 0 0 O
q | 54
w =[ﬁ], ¢ =4(a,pt);

P

- P 954. -
i = - e : = —-H ,—¢".
[5] [#l . e

This is the generating function and H.J. equation of the second kind [3].

X —Jan Jan
111 —
( ) ) , { %Iln %‘I:n
W = %(3 +2), o= ¢(wrt);

& =J(z-3)=V$, ¢=-Hw-g§JVg).

] :F’=1:MD=I: ‘CaMﬂ'l' Dul?’:oi

" This is the Poincare’s generating function and H.J. equation.

If the Hamiltonian function H(z) depends analytically on z then we can give
‘through recursions the explicit expression of the corresponding generating functions.
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Theorem 20. Let H(z) depend analytically on 2. Then $o m(w,t) 18 ez-
pressible as a convergent power series in t for sufficiently small |t|, with recursively
determined coeffictents:

bw,) = 3 #B )t (42)
¢{n) (w) = %wTNuw, Np =ETLM{} + B )(CaMo + Dn)_l, (43)

¢ (w) = —p(a)H(Eow), Fo= A*No+ B* = My(CaMo+ D)™, (44)

k n
RO SRS S R 5
—'l i &

61, m =1 Attim=k (45)
| si21

x(A*VU);, - (47 Vlml),,

where Hy, ... (Eow) is the m-th partial derivative of H(z) w.r.t. zi, %,
evaluated at z = Eow and (A°V¢)(w)); is the i;-th component of the column
vector A2Vl (w).

Proof. Under our assumption, the generating function ¢a, g(w,t) depends
analytically on w and t in some neighborhood of R?" and for small t|. Expand it

as a power series as follows

Sty = Y $P ()t

k=0

Differentiating it with respect to w and t, we get

Vo(w,t) = 3 Ve ()t (46)
: k=0

2 4= bimt) = L (k+ e ) ()
=0

By (33),
V¢ (w) = Vé(w,0) = f(w,0) = Now.

So we can take q{:(“)(w] — %wT Now. Denote Eg = A*No + B<. Then

A°Vé{w,t) + Bw = Eow + Z A*V 8 (w)tk.
k=1

Expanding H(z) at z = Epw, we get

H(A*Vé(w,t) + B*w) = H(Eow + i A2V g w)t*)
5 k=1
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in o0

= H(Epw)+ ) % Y  H ,il,...,,i; (EBow)tit—+im
| m=1

ili"'l‘-_":l ,.1 I“‘ljﬂ- =1

x(A“wffﬂ(w))n (A2 glim)(w));,,

= H(EDW)+ E m| E Z tk z: H’il AL . (Eotﬂ)

'll "-‘_1 k}m jl+*:-+jm=

nz1
x(A“wffﬂ(w))n - (A2 Vglm)(w));,,
a n
= H(Fyw)+ Etk 21 g e 1 >, Hy, . (Eow).
m— 81, 0m=1ji+-+im=k
Ji21

x(A%V#U1)); -+. (A2VgUm)), .

Substituting this into the R.H.S. of (34) and (47) into the L.H.S. of (34), then
comparing the coefficients of t* on both sides, we get the recursions (44) and (45).
Q.E.D.

In the next section when we use generating functions ¢, g to construct dif-
ference schemes we always assume My = I. For the sake of convenience, we restate
Theorem 19 and Theorem 20 as follows.

Theorem 21. Let a € CSp(Jin, Jun). Let z — 2 = g(z,t) be the phase flow
of the Hamiltonsan system (81} with Jacobian M(z,t) = g,(=2,t). If

ICa + Da| # 0, (32°)

then there exists, for sufficiently small |t| and in (some neighborhood of ) R*™™, a
time-dependent gradient map w — @ = f(w,t) with Jacobian N(w,t) = fu,(w,t) €
Sm(2n) satisfying the transversality condition (17.3) and a t:m-dcpendcnt gener-
ating function ¢, g(w,t) = ¢(w,t) such that

1. f(w,t) = Vé{w,t);
2. 98 = _uH(A*V(w,t) + B®w),
3. Aag(z,8)+ Baz = [(Cag(2,t) + Daz,t) = V$(Cag(2,t) + Daz,t),
4. N = 0o(M) = (AaM + Bo)(CaM + Do)~}
M = 0,-1(N) = (A°N + B®)(CN + D)1,

Theorem 22.Let H(z).depend analytically on z. Then ¢, g(w,t) is express-
ible as a convergent power series in L for sufficiently small [t|, with the recursively



No. 1 Construction of Canonical Difference Schemes... 80

determined coefficients:

$(w,t) = i 38 (w)ek,
k=0
¢(D)(w) — %WTNUW, No = (Aa +4- Ba)(C.;. 4 Da)_l',

$W(w) = ~p(a)H(Bow), Eo=(Ca+Da)™’,
" k 1 2n
k> 1, ¢(k+1)(w) - _fl-F)f ’EIR' Z H,'.l_...,..._'(Eow) Z

$1,im=1 1t Fim=k
21

% (A2V$)); .- (A2VUmD),;

§6. Construction of Canonical Difference Schemes

In this section we consider the construction of canonical difference schemes
for the Hamiltonian system (31). By Theorem 18, for a given time-dependent scalar
function ¢(w,2) : R x R — R, we can get a time-dependent canonical map §(z,t).
If ¢(w,t) approximates some generating function ¢4 g(w,t) of the Hamiltoman sys-
tem (31) then §(z,t) approximates the phase flow g(z,t). Then fixing ¢ as a time step,
we can get a difference scheme —the canonical difference scheme—whose transition
from one time—step to the next is canonical. By Theorem 22, generating functions
é(w,t) can be expressed as a power series. So a natural way to approximate ¢(w,t)
is to take the truncation of the series. More precisely, we have

Theorem 23. Ustng Theorems 21 and 22, for auﬂic{endy small 7 > 0 as

the time-step, define

i w,r) =Y ¢ (w)r’, m=1,2,-. (48)
s=0
Then the gradient map |
w— &= f(w,r) = V™) (w,7) (49)

defines an smplicit canonical difference scheme z = * -z

Ay 2"t 4 Bzt = V(M) (Cpa*t! + D2k, 1) (50)

k41 Z,

of m-th order of accuracy.

Proof. Since ${™(w,0) = ¢(w,0), ${e(w,0) = fou(w,0) = fu(w,0) =
N (w,0) satisfies the transversality condition (17.3), i.e., |C*N(w,0)+D*| # 0. Thus
for sufficiently amall r and in some neighborhood of R**, N (™) (w,r) = #:L":.] (w, )
satisfies the transversality condition (17.3), ie., |C*N (m)(w,r) + D*| # 0. By
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Theorem 18, the gradient map w —» & = f (w,7) = ?\b("‘)(w,r) defines implicitly a
time-dependent canonical map z — £ = §(z,r) by the equation

AaZ + Baz = Vy(™(C,2 + Dz, 7).
That is, the equation
Aa2*tl 4 B 2* = th("‘)(Cqu'l + Doz, 7)

is an implicit canonical difference scheme.

Since (™) (w, r) is the m-th approximant to $(w,r), 8018 f (w,r) = V(™) (w, T)
- to f(w,7). It follows that the canonical difference scheme given by (50) is of m-th
order of accuracy. Q.E.D. |

It 1s not difficult to show that the generating function ¢(w,t) of type (III)
18 odd in ¢. Hence Theorem 23 leads to a family of canonical difference schemes of
arbitary even order accuracy.

—Jan  Jan

Theorem 24. Let o = [ } . For suffictently small r > 0 as the

%Iin %Izn
tsme—step, define
_ "b(zm)(w’f) = Z¢(2i-1)(w)r2i-—1, m=12-:-. (51)

i=1

Then the gradsient map
Ww— W= f(w,r) — ?w(z"‘}(w, T)
defines smplicitly canonical difference schemes z = 2% — zZk+1 — z

L J—1V¢[2m]( % (zk+1 o zl:),r) (52)

of 2m-th order of accuracy. The case m = 1 is the Euler centered scheme.
For the linear Hamiltonian system (31) with the quadratic Hamiltonian H (2) =
%ZTSI, S € Sm(2n), the generating function of type (ITI) is the quadratic form

$(w,7) = —%wT(ZJ tanh iL]w
o0 ; 52
N — Zaﬁ_leJ(%L)h—lw, F = J—IS, ( )
t=1

where

tanh A = A — 2AS + &8 — ATAT ... =3 g, 231
1=1

az-y = 28(2%¥ — 1)B3:/(25)!, Bz;—Bernoulli numbers,
J tanh 5 L € Sm(2n).
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M

We can easily get (53) by a simple way.

We know, the phase flow of the linear Hamiltonian system
‘% =J18z=Lz, L=J!8,

is ¢*L. Set 2 = 2(0),% = e"L2(0) = ¢"z. Then

O=Jz-8)=J(I-¢")2, w= -12-(z+i‘) = %(I+ ez

Hence - e
& =2J(I-eEL)(I+eb) lw= ZJ%
= —~2J ta.nh(EL)w.

Taking the truncation of (53),

¢[!m) (w,r) = z Giag_qitT J( L)"‘

i=1
we get the gradient map

"b(‘lm] i _2‘12321—1(# )2! 1

t=1

Noting that & = J(z — 2),w = %(z + %), we have

J(z—-2)=-J Z uz._l( L)z'“l(z + 2).

So the 2m-th order difference scheme 1s

zk'i'l _ z e Zail—l( L)?t—l(zk-l-l + Zk)

i=1
Set m = 1, we get the Euler centered scheme.
If we take the diagonal Pade approximants to tanh A,

C;R:((ig tanh A = o(|A]>™+1),
where
Ro(A) =0,
Ri(A) =4,
Rm(d) =(2m —1)Rn-1(2) + M2 Rm-2(2), m=2,3,---,
Qo(A) . =1,
i(r) =1,

Qm()t) = (2”’1 = I)Qm—l(‘l) -+ Azqm_g(,\)’ " = 2:3: en



92 Journal of Computational Mathematics VYol. 11

then we get another type symplectic difference schemes

£k+1 — ok — Rm(_“ )(zi:-kl i z")
Qm( L)
1e.,
ml=L L
oa OGO+ Ra(D) | 5
Qm( L) - Rm(; L)
Suppose that Pp,(A)/Pn(—2) is the dlagc}nal Pade approximant to e* where
PU(A) = ],
Pi(A) =2+ A,

Pn(A) =2(2m — 1)Pp_1(A) + A%Pp_2()), m=2,3,---

Then because

by )y 2

e’ — ¢ —14 €
tanh A = _— ,

e 14+

the diagonal Pade approximant Ry, (A)/Qm(A) to tanh A is

Rn(A)  —1+ Pp(2))/Pm(~2)) _ Pm(2)) — Pm(~2))
Qm(A) ~ 1+ Pn(2A)/Pm(—2X)  Pn(2)) + Pm(-2))

Hence

Rn(A) = cm(Pm(2)) — Pn(—22)), Qm(A) = em(Pm(2A) + Pp(—2X)),
where ¢, = const # 0. It fnllo.ws that

Pn(20) = 5—(Qn(N) + Ra()),  Pa(-2) = 7.=(@n(}) = En(X);

In fact ¢y = 2™™. So (54) becomes

k+1 _ Pp(rL) Sk
m(-—fL)

4

Examples of canonical difference schemes.
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B+l — ok 4 L (ph+] ok t=1,.2,n. (55)
QI. ql T pI(P '—'q )
When H is separable, H = U(p) +V (q), Hy;,(p**',¢*) =V, (qk) Hy, (p**1, ")
= Up,(p**1). At this time, (55) becomes

{ P“’+l =P§ — TVQ-‘(?‘:):

ot = qf + rUL (pFY),

Evidently, (56) is an explicit dlﬂ'erence scheme of 1-st order of accuracy. If we
set ¢'s at half-integer times ¢t = (k + 2)1’, then (56) becomes

{ P:H-l e Pt TV'I:(qh-}-i):

{ pit! = pf — rH, (p**1, ¢%),

t=1,---,n. (56)

bedid T Bk ' (57)
q; = q; =+TUPi(Pk+1)'

(57) is a staggered explicit scheme of 2-nd order of accuracy.
b. Second order scheme.

B (w,r) = ¢V (w) + 24 (w).
The induced gradient map is

s=1
n

T
2
VP Z H‘I’:‘HP-'
s=1 2

& = Veotpl?) = —

n
7 l 2 Vq Z Hqy Hp,

So the second order scheme is

& i
k1= ok _ o g (p*1, ¢%) — 1-2_ (E H"fHPf)q.-(pkH’ 7*)

e |
’ i=1,--n.

2 i
'If“ = ?f + "Hp.-(PHl: ?k) + %(Z quHp,-)P,(PkH: qk)
=1 ‘

This scheme is already implicit even when H(z) is separable.
c. The third order scheme is, fors =1, n,

2 n

k

f+1 = P:# . qui(pk-H: qk) = '!2_ E(HQjHPj)q;(Pk+l:q )
§=1

8 n
- k
- Z (Hpip; Hoy Hy; + Hyyg, Hp Hy, + Hpg Hy Hy.),. (p**',¢%),
.5=1

. 5 N
:H-l - q'? £ TH?;(Pk+1:qh) + 1-2' E(quHPj)p;(Ph-l:qk)
=1

3 g
. k
+I6' E (Hmﬁ}: Hy; + Hyyq; Hp Hp; + prququPf)p;(PHl’ vl
i,3=1
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M

By Theorem 22, as u =1,

$(w) = 2uwT Now, Nu = (Ag + Ba)(Ca + Do)},
¢V (w) = —H(Eow), = (Ca+ Da) 7",
¢ (w) = I(VH)TAﬂEg(vH)(Eow),
$O(w) = —L(VH)TA2V,¢® - L(A*VM)T H, (A2V(1))
= ~3(VH)" A*(ET H,y A*EJ VH + E§ Hy: Eo ATV H)
—H(VH)TE,A®TH,, A*EJVH
= — g{(VH)T A*E] Hux(A®E] + EoAT)VH
+(VH)T BgA*TH,, AEfVH}.

Here we use, instead of the component notation in Theorem 22, the matrix notation,
H,, denotes the Hessian matrix of H; all derivatives of H are evalyated at 2 = Eow.

Type (1) .
0O -Ip, O 0 T _1 0 -1, 0 O
Q= ; o' =g =
0 0 0 I, = Iy 0 O
In O 0 0 0 0 I, O

¢(1)(w) _H(FI ‘3):
7
¢ (w) = ~ Y (Ho Hy,)(5,9),

i=1
n

#B-?(w) = ‘% D (Hpup, Ho Hy; + Hosq;Hp Hy; + Hop; Hy, Hey)
ii=1

where H(z) = H(ph 'y Py 1, )y Hey = 0H /4.
a. First order scheme,

$W(w,r) = $© (w) + rsM ().

- The equation W = Wqﬁ-(l](tﬂ,r) defines a first order canonical difference scheme
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Type (III)

[ ~Joa  Jon -1 %JZH Ian ]
Bl g i S '
QIﬂn gIln -E-Jﬂn Izn
w=%(i’:‘+z), = J(z - Z).

No=0, Eo=1I A®E] + EjA*T =0.

¢[0) = ¢{2] pnis ¢(4) — 0,

$M(w) = —H(3( + 2)),

3 (w) = QII(VH)TJH.,J?H,

o (w,r) = —rH,

$O(w,r) = —rH + §y(VH)T JH,JVH.

By Theorem 24 the second order scheme is

ie.,
1
2kl — k + fJ_IVH(E(zk"'l + zk)).
The 4-th order scheme is

J(z - 2) =& =V, oW (w,1) = —fVH(%(z +3)) + 5?,((VH)TJH,,J‘?H)

4 ilEl"

3
2Kl = ok rJ“IVH(%(z"“ + zF)) - -;-EJ"?.((VH)T JH,,J‘?H)(%(:"“ + 2%)).
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