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ON BOUNDARY INTEGRAL EQUATIONS
OF THE FIRST KIND 1
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Abstract

A large class of elliptic boundary value problems in elasticity and fluid me-
chanics can be reduced to systems of boundary integral equations of the first
kind. This paper summarises some of the basic concepts and results concerning
the mathematical foundation of boundary element methods for treating such a
class of boundary integral equations.

§1. Introduction

The boundary integral equation method for numerical solutions to elliptic
boundary value problems has received much attention and gained wide acceptance
in recent years. As is well known, the method is particularly suitable for obtaining
numerical solutions of exterior boundary value problems and implies an approxi-
mate technique by which the problem dimensions are reduced by one. The latter
leads to an appreciable reduction in the numbers of algebraic equations generated
for solutions, as well as much simplified data presentation. However, irrespective of
the particular numerical implementation chosen, central to the method is the reduc-
tion of boundary value problem to equivalent boundary integral equations over the
boundary of the domain for the problems under consideration. This reduction is by
no means unique.

In the conventional approach, Fredholm integral equations of the second kind
are generally obtained either by using the “direct method” based on Green’s formula
or the “indirect method” in which case solutions are expressed in terms of simple or
double layer potentials depending on the problem under consideration. The integral
equations of the second kind are numerically stable and hence have been used ex-
tensively in engineering applications. However, in contrast to the partial differential

1) Locture delivered at China-U. 8. Seminar on Boundary integral Equation and Boundary
Element Methods in Physics and Engineering, December 27, 1987 - January 1, 1988, Xi’an Jiaotong
University, Xi’an, People’s Republic of China.
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equations, all the essential properties of the original elliptic operators such as sym-
metry and coerciveness are generally not preserved for the corresponding boundary
integral operators in the variational formulation. Hence from the theoretical and
computational points of view, the boundary element method for the Fredholm inte-
gral equations of the second kind is not satisfactory.

Alternatively, for a variety of physical problems with the Dirichlet data, if one

expresses the solutions in terms of simple-layer potentials (Flchera[3] Fichera and
Rlcc1[4] Hsiaol10-1 1] Hsiao and MacCamy [21_22] Hsiao and Wendla.nd[%"so]

hRoux[31] and MacCamy[32]] or employs Green’s formula for the solutions (Hslau

and Roach [24] Nedelec and Planchard[33]) boundary integral equations of the first
kind will reault Similarly for problems with the Neumann data, boundary inte-
gral equations of the first kind (involving hypersingular integral upera.tars) can be
obtained by using double-layer potentials or by differentiating the Green representa-

tion formula for the solutions (Feng [6'7], Giroire and Nedelec[al, Han(9) ; Hsiaol16) \

Hsiao and '5‘\»’6:1:14::1lal:.'ld[21’=I 29—30], and Wendlandlsﬁh. In these formulations, in con-
trast to the integral equations of the second kind, the symmetry and coerciveness
properties of the integral operators follow directly from those of the original partial
differential operators via the trace theorem in Sobolev spaces and vice versa. Hence
the boundary element method for the integral equations of the first kind 1s more sat-
isfactory and compatible with the finite element method for the partial differential
equations.

In this paper, for simplicity we will confine to the model problems for the
Laplacian in IR™ n = 2,3, the exterior Dirichlet and Neumann Problems. In either
case we will reduce the boundary-value problem to a boundary integral equation of
the first kind via the direct or indirect method. As will be seen, the corresponding
boundary integral upera.tnrs are typical pseudodllferentla.l operators of order 2«
where a is equal to —2 for the Dirichlet problem and +2 for the Neumann problem.

§2. Boundary Integral Equations

Throughout the paper, let T’ be a sufficiently smooth simple closed curve in IR?
or surface in IR, andlet (3¢ be the exterior domain. We consider two fundamental
boundary value problems for the Laplace equation

Au=0 in (1)

the Dirichlet problem (D) and the Neumann problem (N). The boundary conditions
and the conditions at infinity .are

uf=¢ on T and u=0(z*") as |z]— oo (2}
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—ulp=¢% on I and u=0(z|"') a |z| >0 (3)

for (N). Here v denotes the exterior normal to I' with respect to IR™ \ﬁc,n = 2,3,
and the given data ¢ and ¢ will satisfy certain regularity conditions to be specified
later. For (N) in IR?, we also assume that 1 satisfies the compatibility condition:

Lif)ds = [, | | (4)

which is necessary for the existence of a unique solution to (1) and (3).
To reduce the boundary value problems to boundary integral equations of the
first kind, we begin with the Green representation formula for the unknown solution

u(z) of (1):

a c
u(z) = /; {a—%’rn(z,y)crl (v) — *rn(z,y)az(y)}dsu -w, zEL, (5)
where ;
7(z,y) = -5 —log |z — 3| and 7s(z, ) = lz-v™
are the fundamental solutions of the Laplacian in IR? and IR®. Here 03 = u|r and
oy = 3%“‘1- are the Cauchy data of the solution of (1), and w is an unknown constant

which is zero except for (D) in IR?. The Cauchy data o1 and o2 are not linearly
indepenident and they are related by the boundary integral equatiéns derived from
(5) by taking the traces of u on I':

1 1 ,
EJI == Kﬂﬂ'l =% vnﬂ'z — W and Eﬂ'z = —wﬂﬂ‘l = KLE’; (5)
or simply e= C,o0— w if we denote ¢ = (a;,ag)T = 2(w, O)T and C,, the

Calderon prnjectar[2'3] Here K,,, V,, W, and K/ are, respectively the boundary
integral operators of the double, simple, hypersingular and adjoint of the double layer
potentials: For x € I', they are defined by

-

K,.o(z) :=La—‘9§;7n(219)5(9)d3u5
Vao(z) := f n(z, y)o(y)dsy,

Wao(z) := ——a—/ 'Yn(ﬂ? y)o(y)dsy;
K'o(z) = /; =

(I, y)a' (y) dsﬂ ¥
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These are four basic boundary integral operators whose properties will be discussed

later.
For the Dirichlet problem (D), since &1 = ¢ is given, from the first equation of

(8), we arrive at the boundary integral equation for o2 and for the unknown constant
wlw=0,ifn #2):

A

Va0 +w=¢ := —%¢ + K, 9. (8)

For n = 2, the nuknown o2 is also required to satisfy the normalization condition

/;crgds = {; (9)

because of the growth condition in (3). This formulation based on (5), (8) with
w = 0 for n = 3 or (5), (8), (9) for n = 2 is the direct approach. For the tndirect
approach, we may seek a solution in the form of the simple-layer potential (5) with
o1 = 0, and arrive at the similar equation (8) or equations (8) and (9) if we replace
¢ by —¢ in (8).

On the other hand, for the Neumann problem (N), o2 = % is given and we
have the boundary integro-differential equations for oy

Waoy = ¢ = —%t,b - K ¢, (10)

Lalds =b (11)

in the direct approach for both n = 2 and n = 3, based on the representation (5)
with w = 0. In this formulation, we have added the normalization condition (11)
in order to insure the uniqueness of the solution. (Note that nonzero constants are
eigensolutions of (10)) Here b is any fixed constant. Similarly, for n = 2, in the
indirect approach, we may use the representation formula (5) with o2 = 0,w = 0,
and obtain the same boundary integral equations (10) and (11) except that ¢ is now
replaced by —1. However, for n = 3, because of the growth condition (3), we seek
a solution in the form:

u(z) = — ai'rs(ﬂr,y)ﬂi(y)dﬂﬁﬂlml“, z €0 o (12)
L Ouy

with a constant a to be determined. Then the boundary condition (3) yields the
same equation (10) for the unknown density function o; but with 1 replaced by

d

.Z::.p-aa%]mrl, zeT. (13)
Now, the constant a is chosen so that

s 1

Yds=0 or oa=-—— | ¢ds.

r 4z Jr
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We note that in IR3 the compatibility condition (4) is not needed. However, for the
uniqueness, we impose here again the condition (11). |

Equations (8), (9) (or simply (8) for n = 3) and (10) (11) may serve as
representative boundary integral equations of the first kind for the elliptic boundary
value problems in /R",n = 2 and 3. If we introduce the operators Ap,Ap and Ap:

Ap(o,w) = (Vo + wj;nrda), Apo :=Vso (14)

An(o,w) = {(Wpo + w,[ ods), n=2,3,
y
then these equations may be rewritten in the form

Ap(o,w) = ($,0)(n = 2),Apo = §(n = 3) (15)

and
Ayn(o,w) = ($,b), n=2,3 (16)

for (D) and (N), respectively.

We remark that (16) is indeed equivalent to the equations (10) {11) for the
Neumann problem (N), since under the assumptions (4) and (13), one can easily show
that w = 0. However, in the present formulation not only the test function space is
relaxed but also, as will be seen, the algebraic system in the Galerkin approximation

below will not become overdetermined by including this fictitious constant w (see
Hsiw[13]).

§3. Mapping Properties

We now consider the existence and uniqueness of the solutions of equations
(15) and (16). For this purpose, we need to examine the mapping properties of the
integral operators defined by (7). First, we need some notation. For & > 0, we
denote by H*(T'), the Sobolev spaces {or their interpolation spaces) of generalized
functions on I', and for & < 0, let H*(T') be the dual of H™*(T'). The norm in H*(T')
will be denoted by || - ||, Thus, in the case s =0, | - ||o is the Lz-norm, and (:,-)o 18
the corresponding inner product.

The following mapping properties are now well known:

Theorem 1. For C® boundary I', the boundary tntegral operators defined by

(7)
Vv, : H:—l}?(r) . & Ha+1f2(r); K, : Ha+1/2(r) . & H:+3f2(r)

K:: : H:—lﬁ(r) 5 Ha+1f2(1\); W, : H:+1/2(F) g Ha-lﬁ(r)

are continuous for any s € IR.



126 Journal of Computational Mathematics Vol. 7

The mapping properties are particularly important for 8 = 0, in which case we
will find the traces of the variational solutions of the boundary value problems from
the integral representation formulas. In terms of the terminology in pseudodifferen-

tial uperators[35] Va, K, and K! are operators of order —1, while W, is of order
+1. In fact, both V,, and W, are strongly elliptic pseudﬂdlﬂ'erentla.l operators on
boundary manifold I' (see e.g., [3], [27] and [37]), and they are related according to

(W;ﬂ', ¢)U = (sz-?': ‘;6’)0 and (WBG': ¢)U = (VSV A vﬂ','lf A v¢)0

for all o, ¢ € HY/2(T'). Here the prime denotes the tangential derivative with respect

to the arc length.
For the systems (15) and (16), we have the following existence and uniqueness

results. The proofs may be found in Hsiao and Wendland[25] Hsiaol14; 16] and

Wendland [36] ;

Theorem 2. (a) The integral operator Ap ts continuous and bijective from
H*~1/3(T") onto H*tY/3(T') for any s € IR and it is H~Y/2(T)-elliptic, i.c. there
exsste a constant v > O independent of o such that the strong coerciveness property:

(Apa,o)o > 'T”*T“iuz (17)

holds Yo € H™Y*(T). (b) The operators Ap : H*"V/*(T') x IR - H**Y*(I') x IR
and Ay : H*TV2(T) x IR — H*"Y/3(T') x IR are continuous and bijective for any
8 € IR. Moreover, the followtng Gérding’s inegqualities hold:

(Ap(o,w),(a,w))o > Hlol|Z,/z + wl*} — 6{]lolIZ; + |w]*} (18)
Y(o,w) € H~1/2 x IR, and
(An(o,w), (a,@))o 2 v{llelli/z + |w]*} = 6{]lo]l§ + |w|*} (19)

Y(o,w) € HY?(I)x IR, wherey > 0 end § > O are constants independent of o and w.

Theorem 2 implies that the operators here are isomorphisms (hence the in-
verses of the operators exist and are bounded) between the corresponding function
spaces. From the inequalities (17)-(19), we see that the operators Ap, Ap and Ay
are Fredholm operators of index zero for S = 0. Because of the strong ellipticity,
they are, in fact, Fredholm operators of index zero for all 8 € IR (see Treves (35,
Thm.2.5]). Hence, the classical Fredholm alternative remains valid here. The func-
tion spaces H~1/3(T), H-1/?(I") x IR and H'/3(T") x IR are the corresponding energy
spaces. We remark that here (-,:)o actually represents the natural L;-duality pairing
between the energy space and its dual. Furthermore, for n = 3, if we denote the
simnple-layer potential by

o(@) = [ m(z)oly)ds, z€ BT
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and denote the jump of aa;v across I' by [3%] , then one can show that

ov
(Vso,0)0 = ./;'u [5] — [Ra Vo[ dz = ”"'”233(“’)’

where ""'HQH}[R!*] = ||pu"i,{R,) + ||Vu”i=(R;), and p= (1 + |,1;|3)-—*1f2 is the weight
function. The coerciveness property (17) then follows easily froin the trace theorem
and boundedness of the inverse of Vs. However, for n = 2, we must restrict o

to some subspace of H~1/3(T) in order to employ the same approach[3], since the
corresponding Dirichlet integral generally does not exist for 0 € H ~1/2(T) and V,
is not one-to-one in general. Nevertheless, we may also have the strong coerciveness

property for V3, provided diam (IR?\{1°) < 1 (see Hsiao and Wendla.nd[25]).

§4. Galerkin Approximations

In what follows, we rewrite (15) and (16) in a more general form
A(o,w) = (/,0) | (20)

with given (f,b) and consider A : H'(T) x R —» H* **(F) x IR, € IR as a
continuous, bijective map satisfying the Garding inequality of the form

(Ale,w), (0,9))0 2 7{|lo|l + |’} - [K[(e,w), (,w)] (21)

for all (o,w) € H*(I') x IR, where K is a compact bilinear form on H*(T') x IR.
The operator A is of order 2« , and H*(T') x IR is the energy space. In particular,
for A= Ap and A = Ay, we have 2a = —1 and +1; respectively. Note that the
imbeddings H~1/3(I') x IR — H™'(T') x IR and H/3(T) x IR < H°(T) x IR are
both compact. Hence the formulation (20), indeed, includes (15) and (16) as special
examples. -

The GArding inequality implies that A is a Fredholm operator of index zero,
and it plays a fundamental role for asymptotic error estimates for boundary element
methods. To describe the Galerkin method, we need the variational formulation of

(20). Given (f,b) € H*"?*(T) x IR, we say that (o,w) is a variational (or weak)
solution of (20) if (o,w) € H*(T') X IR and satisfies

al(,w), (6 K) = L%) ¥ (xK) € B(T) x R, (22)

where the bilinear form a(-,-) and the continuous linear functional £(-) are defined
by ‘ '
a{(o,w), (x,x)) = (A(a,w), (x,%))o
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and

t(x:m) = ((f:b):(X: "’))D = (f: X)ﬂ + b - k.

We remark that in our formulation the pairs H*([') and H*~2*(T") are dual spaces
with respect to the Li-scalar product only for 8 = a. This can be easily modified by

using the (-, ), scalar product. However, we will not adopt this approach herel36].

Galerkin’s method consists of seeking an approximate solution to (22) in a
finite dimensional subspace S), x IR of the space H*(I') x IR of admissible functions
rather than in the whole space. More preccisely, for fixed 8 > a , let S, ¢ H*(T')
be a family of finite dimensional subspaces which approximate H*(I'}, i.e. for every
o € H*(T') there exists a sequence x € S C H*(I') ¢ H*(T) such that ||x — o|a —
O as h — 0. Here h denotes a parameter which is inversely proportional to the
dimension of S,. Then the Galerkin approzimation of the solution (o,w) of (22) is
the solution pasr (0,&) € S), X IR satisfying the Galerkin equation

a((d,0), (x,%)) = €(x,x) V(x,x) € Sp x IR. (23)

The essential properties concerning the Galerkin approximation (7,&) can be sura-
marized in the following theorem without specifying the subspace S5 in any partic-
ular form (Hisao and Wendland[25], and Stephan and Wendland[34]).

Theorem 3. To A in (20), there ezists an hg > O such that the correspond-
tng Galerkin equations (23) admit e unigue solulion pasr (,&) for every h < hg.
Moreover, the Galerkin projections

G, : (o,w) — (0,@)
18 unsformly bounded, that 1s,

|GallEg B, = sup [[Galo,w)lipg < ¢
lefiatiwl<1

for all h < hg, where ¢ = c(hy) and Hg := H®*(I') x IR. Consequently, we have
Céa’s type of snequality:

lo = &lla + | — @] < (14 ¢)(flo = Xlla + |w ~ «]) (24)

for all (x,x) € Sy x IR.

The uniform boundedness of the Galerkin projections follows, of course, mainly
from the G&rding inequality {(21). The significance of (24} is that it provides the basic
inequality for obtaining convergence results in norms other than the energy norm for
the integral operator A. As in the case of partial differential equations, this simple,
yet crucial estimate, (24), shows that the problem of estimating the error between
‘the solution (o, w) and the Galerkin approximation (&,&) is reduced to a problem
in the approximation theory. In particular, if we assume that the finite-dimensional
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subspace S), is a regular finite element space in the sense of Babu$ka and Aziz[ll,
then one may obtain convergence results with respect to a whole range of Sobolev
space norms, including super-convergence results by using Aubin-Nitshe Lemma for

the boundary integral equations. Details may be found in the references [24]
Stabihity analysis for boundary integral equations of the first kind (20) is

also available in the references|12> 14, 23, 26/ It 18 now well known that Fredholm
integral equations of the first kind are generally ill-posed in the sense that solutions
do not depend continuously on the given data in appropriate function spaces, if the
corresponding integral operators have negative orders such as (20) with negative
o. In this case A : H*(I') x IR — H*(T') x IR is compact because of the compact
imbedding H*~2%(T') — H*(T') for a < 0. Consequently A~! is not bounded from
H*(T') x IR into itself. In turn, this may cause problems of instability when one

performs the numerical computations. Nevertheless, it is shown in Hsiaol14] that
an optimal choice of the mesh size can be made in the numerical computations so
that one will obtain an optimal rate of convergence of the approximate solutions.
On the other hand, for a > 0,A™! is compact but A, like differential operators,
1s unbounded from H®(I') x IR into itself. Thus, the Ls-condition number of the
discrete equation (23) is always of O(h~/?®!) in spite of the sign of (see Hsiaol16]
for details). |

Te conclude the paper, we comment that the approach here based on the
formulation of boundary integral equations of the first kind has been employed in
a variety of problems in elasticity and fluid mechanics including numerical experi-

ments. In this connection, we refer the reader to the references[15= 17-22, 28-30]
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