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1. Introduction

The accurate prediction of projectile aerodynamics is of significant importance
in the early stage of projectile design. e

In recent years, considerable research effort has been focused on the develop-
ment of modern predictive capabilities for determining projectile acrodynamics, and
numerical methods have recently been developed using the 3-D viscous compressible
Navier-Stokes computational technique to compute the flow over slender bodies of
revolution at transonic or supersonic speeds.

Significant improvement has been made by the author in this paper to make
this technique applicable to more complicated flow, by employing finite element
methods, the splitting technique of nonlinear operators and the conjugate gradient
method for nonlinear subproblems, reduction of an exterior problem into a bound-
ary integral equation, and the domain decomposition method. Applications of the
technique are made to a standard shell configuration to establish a benchmark for

the code.

2. The Compressible Navier—-Stokes Equation in a 3—D Noninertial
Coordinate System

We use noninertial curvilinear coordinates {z'} in a rotating reference frame
with angular velocity w. The coordinate axis z = z° is fixed.
The constitution equation and the dissipation function are given by

ri; = —Pgi; + tis, (2.1)
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tis(w) = — %pug;,- div w + 2p,e:5{w) (2.2)
and |
fo = —%#u( div w)? + 2pypet (w)eg; (w). (2.3)

The equations of continuity, momentum and energy for the gas-dynamics in coordi-
nate system {z'} are given by

% + Vi(ow') =0,

p(é-ati—‘ + w! V' 4+ 267 Fwwy — (w)?r') = Vs + f°,

pCo( &L + wiV;T) + pVjwi = div (kVT) + f. + b,
p=(r—1)CuRT

where h is heat source per unit volume. |

The turbulence models used here are called eddy-viscosity models and are
presented for the Navier-Stokes equation (1.1) by expressing i and p. in terms of
an eddy-viscosity function u.,t.e., |

o = B+ fi, p,zr(%+;—;§), r=C,/Cy, k=Cyu, (2.5)

where p is the molecular viscosity coefficient, p,. the turbulent viscosity coefhicient,
u. the conductivity, & the conductive coeflicient, p, the Prandtl number, and p,r
the turbulent Prandt! number.

The two-equation model employs two additional PDE for variables that are
used to define the eddy-viscosity function { K—¢ equations). The K-« equations are
given by

div (Dl gra.d K)“= fl, div (Dg grad E) = fg

where fi, f2 are turbulent sources, and the turbulent viscosity 18 determined by

o = Copk? [e.

We now discuss the boundary conditions. The exterior domain {Y is decom-
posed into two regions {3, and {12 by a smooth artificial boundary I's. The boundaries
of {1, consist of the body surface I'; and artificial boundary I';. The domain {1z 1s
unbounded. Then, |

w|p, =0, Tir, = 0, w|r, = W, Tt = Tos:

However, we have another way to treat the artificial boundary condition. In fact, .
for a far field from body {1,, the flow can be assumed to be a potential and 1mcom-
pressible, nonviscous flow. Let us consider the momentum equation. Because

w|p, =0 and ¥ (w)".flrg = (_Pgijn.f =+ 2!‘1!*5'1'!',-('-‘”')""".f)Ir':l =
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we have
(w! Vw',v;) + 2(e*w;wy, v;) + (77 (w), €;5(w)) + j:/; = div (pw)vnds = (f1,v)
: 2

where the penalty method 1s employed. On the other hand, setting w = wqy, + 4, we
obtain the equation of u.

3. Variational Formulation and Finite Element Approximation

Setting
(a,b) = /f[ abdv, dv = ,/gdz'dz*dz®,
n .
we have the variational formulation
$0.0) = (o0, 90) + [[ pptunds, Vot e BYQ), @)
2

%(Pw; wm) _ (pwiw!" E"j(w*)) -+ 2(Eﬁkijkp: w:)
_%:(Fu div w, div w*) — 2(Pueij(‘”):eﬁ(“*"*)) -

. 3.2
= (r = 1)Co(pT, div w*) + ((«)’or', w]) + (f,w") -
[ i, ' N ),
Iz
4(C,pT,T*) + (KVT, VT*) - (C.Tpt0, VT*) + ((r — 1)CypT div w,T*)
ap (3.3)

= (fe, T*}+ (A, T") +f (kﬁT' — TT*pwn)ds, VT* e H'(Q).
i 7

Suppose My € H'(Q), (S3)® ¢ H(f2) are finite element subspaces, and

& = {3,,®,,...,8,}, ¥ ={¥,¥,,...,¥,}

are base functions of sy, M}, respectively. For w} € Sy, T, € My, pp € M}, we have

wi = ®Tw', T, =9TT, p,=9TR. (3.4)
By use of (3.4), the finite element equations can be obtained from (3.1)-(3.3) as
Mu%— = E(pn)Whs, | | | (3.5)
M(ﬂh)‘%"‘ + K, )Wy + N(ph,Wh-)Wh + F(pn,Tx) =0, (3.6)
Mi(pn) S5k + LTy + No(pa, Wi)Th = Fo(Wh) (3.7)

where Mp, M(pn), Mi1(ps) are mass matrices given respectively by

My = f f ! W1 dy, (3.8)
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M= (My), M= [[[ 0087 av, (39)
Mi(en) = f f j; Cyup, ¥¥ dy. (3.10)

The stiffness matrixes, L, K{u,) = (ki;), can be expressed as
L= f[/ kVY - VT dy, (3.11)

ki) = [[[ me{6™ s + 576 = Sopshionaare™
+(gimP59™* 33 In \/g6}) 3, 2B (3.12)

+(9™;gm; — §3:1n/76})23, 87

= (%aigmkawmk + %3.; In,/gd;1n /gd;In \/E]QQT}dv
The nonlinear matrix N{(p, W) = (N;),

1
= f f /; —p{5w" (9i580" + gnidy )9 @2"

(3.13)
—(25;551‘.::# -+ %aigm,-w"‘)@@"}du.

The nonlinear matrix No(p, W) is
No(p, w) = — [ f j; Copw' 3, W  dz + f f [n (r = 1)Cop div w¥¥Tdv.  (3.14)
In a similar manner, we have
EBlw)p = /fn(pajw"\l’ + puw’ 3;W)dv — ff pun¥ds,
i r
— ff/;{(r — 1)CypT0:;® + ((r — 1)CpT 9; ln\/§+w2pg.:5r" +gi5f-f)¢1’dv
+/fr(r“f - pw*w?! )n gy ®dv,
Fy = ff (f +h)\l'dv+[f(kaT T pwn)Wds
0 — 0 4 T an P "

4. Time Discretization and the Splitting Method

Let uT = {p, T, w!, w?, w®}. Then the dynamic system of Eqs. (4.1)—(4.3) can
be expressed in the form of

@+ Auw)=f, u(0)=uo I ot

where A is an operator from the Hilbert space H into H. Let A; and A; be two
operators such that

Au) = Ay(u) + Az(u) (4.2)
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with At(At > 0) as a time discretization step. We consider the splitting method
by taking advantage of decomposition. Let # belong to the open interval (0, 0.5).
‘The idea is to split the time interval {nAt,(n 4+ 1)At] into three subintervals, and
integrate for the time interval [nAt, (n + #)At] with an implicit scheme for A; and
an explicit scheme for A;. Then, switch the role of A; and A; for intervals {(n +
#)At,(n+1—8)At] and [(n+ 1 — 8)At,(n+ 1)At|. Following these steps, we obtain

for each step

+ 8
u" 9&: u® : Al(uﬂ+3) o Az(ﬁ“) s fn-i—ﬂ’
n+1 ¢ +ﬂ : .
A=At T A" + Ap(umTI) = o (4.3)
n+1 m+1—460 : _
ti aﬁt Al( n+1 +A2(uﬂ+1-ﬂ) Lo fﬂ'l"l ﬂ,

and u changes from u™ to u™! througn u™ — ut? — P10 _ 471 Let

&pl — pﬂ+ﬂ o Pin: Apz — pn+1 — pn+8, AT = T‘n-l-ﬂ - T", ATy = T+l _ Tn+ﬂ,
AW() — pynté _ wn, AW I(2) — wnt+i-¢é _ W'H_a, AWB) — wntl _ pyn+i-8

Application of Eq. (4.3) to the aerodynamic system of Eps. (3.5)—(3.7) leads

to
Step 1.

gas MoApy + aE(W™)Apy = — E(W™)p",
gAMMAW D + aK (u)aW B = F(p",T") ~ K(u3)W" — N (o™, W™ )W"

aﬁMl(p“)&Tl + aLAT, = Fo(W™) — LT™ — No(p", W™)T". (4.4)
Step 2.
1 M Pn+ﬂ AW{2) + 8K pn-!-ﬂ AW (2) + N pr.+0’Wﬂ+ﬂ
(1 - 28)At v

+QW(2))4&W(2) e N(pn+ﬂ Wn-l—ﬂ +ﬁw(2])wn+ﬁ | (4_5)
e F(pn-}-ﬂ, Tn+ﬂ) K(pn+ﬂ)wn+ﬂ
Step 3.
P?Mﬂﬁﬂz A ﬂE(W“+l_ﬂ)&p: e E(Wrt+l—&)pn+a‘,
mM(P“+a)ﬁw(3) % ﬂ!K( n+1—ﬂ)Aw(3)
- F(p“H,T“H) K(ﬂ. n+l— 3)Wn+1 8 N(pﬂ+ﬂjwﬂ+1—3)wﬂ+l—3, (4.6)
EﬁMl(Pﬂ*’a)ﬁTﬂ + aLAT, = Fo(wn+1-ﬂ) — [ Tnté _ Nn(p""'ﬂ,W“““’)T“”.
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We use two kinds of element: 27-node isoparameter element for velocity: and
8-node isoparameter element for density, temperature and pressure.

In addition, the adaptive method and the (p, h) variation method by Babuska
may be employed. The mesh will be refined or the order of the element will be raised
according to accuracy in the elements. The finite element grid generation is carried
out automatically.

It 1s obvious that splitting leads to linear and nonlinear algebraic systems.
An efficacious algorithm for the linear system will be employed, while the optimal
‘control method will be used to solve the nonlinear subproblems.

5. Numerical Experiment

Figure 1 shows the computational grid for a projectile. Figures la and 1b
show the longitudinal cross section and circumferential distribution of the computa-
- tional grid, respectively. This element has 19 in the streamwise direction, 14 in the

circumferential direction and in 21 the normal direction.
The flow over the projectile at 4° angle of attack and the Reynolds number

5 x 10° based on the model length was computed. The mode used for the computa-
tional study presented here is an idealization of a real artillery projectile geometry.
Figures 2 and 3 show the surface pressure distribution in the lee side and wind side,
respectively. The experimental data are from [1] and [2].
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Figure 1a. Computational Grid (Longitudinal Cross Section).

~ Figure 1b. Computational Grid (Circumferential Distribution)
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Figure 2. Longitudinal Surface Pressure Distribution, Lee Side, My, = 0.96 and
o = 4°
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Figure 3. Longitudinal Surface Pressure Distrbution, Wind Side My, = 0.96 and
a=4"
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