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Abstract

We review some iterative methods for solving boundary integral equations
which arise in Dirichlet and Neumann problems for the Helmholtz and Laplace
equations. In particular we show how these integral equations may be trans-
formed so that they may be solved by Neumann-Poincare Picard iteration.

1. Introduction

We review some iterative methods for solving boundary integral equations
which are simple, effective, and largely overlooked by engineers and scientists inter-
ested in numerical solutions of problems of practical interest. The boundary integral
equations considered are representative of a wide class which may be solved by it-
eration, however here we will restrict attention to these arising in the Dirichlet and
Neumann problems for the Laplace and Helmholtz equations.

The boundary value problems consist of finding solutions at the partial differ-
ential equation (V? + k%)u = 0 for points p either interior or exterior to a smooth

closed bounded simply connected surface T' in IR® with exterior {2, and interior

{1_ which take on boundary values u|r = f (Dirichlet) or g% 5 = (Neumann).

Included is the case when k = O where Laplace’s equation is the governing field
equation. In addition, considering the exterior problem, we impose a radiation con-
dition when k # 0,r($% — iku) = o(1) uniformly in (8,4) as r — co where (r,4, )
are the spherical coordinates of a point p in €2, and a regularity condition when
k:ﬂ,u=0(%) as r — 00.

As 18 well known these problems may be cast as boundary integral equations.
Using the notation and results of Kleinman and Roach [11] we define single and

double layer operators by

Sw :=./;w(q)'r(p,q)dsq, p € IR, (1)
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D= [ w(@)z—(p.)dsg, PET. (2)
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ke (3)
D, 4) =
2%|p — ¢
and boundary integral operators
d
= L 4
Kw Lw(q}anpﬁ(p, g)dsq, peT, (4)
‘E*—-[w()-—a—(p \ds;, peET (5)
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—Dw = — — d ; 6
5209 = 5 [ (@5 (P ey, PET (6)
Then the solution of the Dirichlet problem using the layer ansatz is
+ €y,
4= FDw, d . (7)
‘ — PE i1,

where w is a solution of the boundary integral equation

s — exterior Dirichlet problem ,
wE K w={, (8)
+ interior Dirichlet problem

whereas using Green’s theorem, the so called direct method, the solution is given by

R pEQ+,

:1(Df -.SW),
& + peqn.,

(9)

=
|
1]

where

— exterior Dirichlet problem ,
wF Kw=FD,f, (10)

+ interior Dirichlet problem .

Similarly the solution of the Neumann problem using layers 1s given by

+, pEll,
u = +Sw, PE (11)

% pen-—:

where
+ exterior Neumann problem ,

(12)

wt Kw=f,
~ — Interior Neumann problem
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while using the direct method the solution 1s

1 + pefl
u=+=(Sf - Dw), e (13)
2 — P n-:
where |
_— + exterior Neumann problem ,
wit B'w = £57, d (14)

— interior Neumann problem .

The formulation in terms of the Green theorem has the advantage of guaranteeing
that the right hand side in each of the integral equations is in the range of the
integral operator.

All of the equations are of the form

Lww=(I-Aw=F (15)

with F known, and A a compact operator on Lz(Il') if ' is smooth (Lyapanov). Note
that the integral equations for the Laplace case are obtained by setting k£ = 0 1n
the fundamental solution (3) which appears in the kernel of the layer and boundary
integral operators. Note also that in general the boundary integral operators are
non-selfadjoint hence L in (15) is generally non-selfadjoint (an exception occurs when
k =0 and T is a sphere).

The simplest iterative solution of (15) is in terms of the Neumann-Poincaré-
Picard iterates

wo : arbitrary ,

(16)

wn+1 = Awrn + F-

Unfortunately this sequence often does not converge for the problems under consid-
eration and we discuss a few methods for restoring convergence.

2. Eigenvalue Shifting

Perhaps the oldest method for obtaining a convergent iterative process is the
so called eigenvalue shifting technique first employed in potential theory (k = 0) for
the operators described earlier, see Goursat [5, p. 195] and Kantorovich and Krylov
(8, p. 118].

Essentially the method involves introducing an eigenvalue parameter in equa-
tion (15) obtaining

Aw— Aw = F (17)
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M

then employing a Mdbius transformation of the eigenvalue parameter retaining 1
and oo as fixed points, namely

v ” o B g 1
p=ar+(l-a) on A—E+(1 a)’ (18)

where a is as yet undetermined, in which case (17) becomes
pw— (1 - a)w — aAw = aF (19)
and on setting 4 = 1 and using L = I — A,
w— (I — al)w = aF. (20)

The strategy is to choose « so that the spectral radius of I — al, ro(I — al) is less
than one in which case the iteration

wo arbitrary ,
Wpi1 — (I = CIL)WH + aF

(21)
converges to the desired solution.
Situations when this strategy may be implemented are known. In [10} it is

shown that, letting o(A) denote the spectrum of A, if o0(A) is real,

o sl T
AT = Ag&g]{l}, A" = Aé{}(fm{)t}
A0 A<0

then

. At - A~
mineall —ab) = s %

and this minimum is assumed when

(22)

B 2
T

o (23)

In particular if A* > 1 then r,({ — aL) > 1 for any value of . However when
At <1 and A~ = -1 then

; 14 2%
Eg:ra{f—ch)za_A+_<_1 (24)
and is achieved when y
a=—7 (25)

Moreover if AT < 1 then

;nelﬂrﬂ.(f -al)<1.
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Kress and Roach [7] treated the special case when A* = 0,0~ = —1 and
showed, in agreement with the above, that when
z 1
O = §, rﬂ"(I i C!L) = E (26)

Of course the critical question is whether the requisite properties of the spectrum
of A are satisfied for the operators of interest. The earliest answer was provided by
Plemelj, see Jorgens [7, p. 134], who proved that when k =0 and A = —K and T

was smooth then .
o(A) c [-1,1) and A™ = —1. (27)

In fact even if I' is not smooth it was shown, [16], that this remains true.

However, except for the particular case cited above, Plemelj’s theorem is not
available and the eigenvalue shifting method is apparently not known to be applica-
ble. Another iterative method available to us is described next which, while derived
differently, is closely related to the method just discussed.

3. Bialy’s Method

Originally derived for selfadjoint operators on a Hilbert space, e.g. Wiarda
(23], the method we now describe has been discussed by many authors including
Riesz-Nagy [10, p. 265|, Biickner [4], Bialy {2] and its application to the boundary
integral operators described previously in {13] and [14].

The essential features of the method are contained in the following theoram.

If L is a bounded selfadjoint operator mapping a Hilbert space H into itself
and L is boundedly invertible then

II-aL||<1 if ac (O,H%H).

This means that the equation Lw = F is solvable by first rewriting it as (20) and
then employing the iteration method (21). In fact the optimal choice of o is given
by Kantorovich and Akilov [9, p. 446] in terms of

m:= inf ||Lw| and M := sup ||Lw]||

lwll=1 Jwll=1
as follows:
| of  [[E—alf= 2 (28)
a€(0,727) Mi+m
and is achieved for ”
o= (29)




No. 2 Iterative Methods for Bdﬁndary Integral Equations 145

Of course, as noted earlier, the operators A and hence L treated here are in general
non-selfadjoint however this drawback may be overcome by considering not equation
(15) but rather the equation

L*Lw=L"'F (30)

where L* 18 the Hilbert space adjoint of L. Since L*L is selfadjoint the previous
results apply and we find the associated equation

w—-(I—-al'Lyw=0al'F

may be solved iteratively since

| -aL'L] <1 forallae (0,—).

241k
Moreover ; ;
inf_[[F <ot L = St (31)
ae(u,uT"‘",-] M*+m
and is achieved for "
s M? 4+ m? \9%}

where m and M are defined exactly as before.

It is clear from equation (31) that ||/ — aL*L|| < 1 only if m > O, that is, L* L
1s bounded below, which means that Lw = F must be uniquely solvable. Actually
the 1terates will converge albeit more slowly, even if L« = 0 has nontrivial solutions
provided that F lies in the range of L and —1 is not an eigenvalue of I — aL*L. This

stronger result was obtained by Browder and Petryshyn [3]. Additional references
are given by Nashed [18] and applied to the integral equations of potential theory

in [1].

4. Comparison of Bialy and Eigenvalue Shifting
We now have two methods of suljring equation (15); eigenvalue shifting where
wWn+1 = (I — aL)w, + aF, (33)
and the Bialy method where |
wn+1 = (I — al’L)w, + aL*F. (34)

Some measure of comparigon of the two methods is available in the case when
Plemelj’s theorem {27) holds. Then as noted earlier
2 1+ At

= o =¢vr¢,(I—n:L]=3_i+.

(35)
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Moreover since o(f — aL*L) = {1 — a1 — A)?|x € o(A)} it is straightforward to
establish that

2 4~ (1- A+)2
= = ro(l — al’'L) = — 36
4+ (1-2H)° ol ) 4+ (1-2%)° (36)
and this is the smallest value of the spectral radius over all real a.
In the case that AT = 0 we find the following optimal results,
2 1 |
a=§=>r,(f—n:L)=—3— - (37)
while
2 . 3
azg-—'}rg(f—aL L)=—-5--, (38)

We note in passing that C. Neumann’s original solution of the patentla] prob-

lem corresponds to a choice of a = 1 /2 in which case r,(I —alL) = 2 which, though
not optimal for eigenvalue shifting, is clearly superior to the optimal result using
the Bialy method.

This discussion indicates that the eigenvalue shifting method is preferable but
the question arises as to its applicability when Plemel)’s theorem is not available.

5. Generalized Over—Relaxation

In general the operator A will be non-selfadjoint and its spectrum will be
complex. Nevertheless we wish to employ the same iterative algorithm used in the
eigenvalue shifting method, (21), even though we don’t have Plemelj’s theorem on
which to base a proof of convergence. This algorithm is the simplest form of the
generalized over relaxation method of Petryshyn [19] which is the operator equivalent
of a stationary one step Richardson method in matrix theory (e.g., Varga {22, p.
141]).

Of interest is whether it is possible to choose a, now possibly complex valued,
for which r,(I — aL) < 1. One answer is provided in [15], phrased in terms of o(L)
rather than o(A) where o(L) = {1 A|A € 0(A)}. Choose 0 < arg u < 27 and define

0 = Inf ar 39
i anp (39)
and |
fre = sup argu. (40)
p€o(L)

Then the crucial result may be stated in the following.
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Theorem. ifm > 0 and Opy = 0,, < x then there exists o € ¢ such that
ro(I - aL) < I. (41)

This result considerably enlarges the class of operators, beyond those for which
Plemelj’s theorem is available, for which the iteration method (21) can be shown to
converge. In addition the range of values of o for which (41) holds is characterized
in [15] in terms of o(L). The conditions for (41) to hold are

gin /2

v (42)

0<|al <

d
N | ’+9— inf argu < arga < - . sup ar (43)
272 ey RS T 2T o
where 8 is any value in the interval (0, x — O + Op).

Not withstanding these results, the task of actually choosing an appropri-
ate value of o is still a problem. It depends, in this analysis, on having detailed
knowledge of o(L). Unfortunately, in particular cases such information is generally
unavailable or at best may be found only at the expense of considerable computa-
tional effort. Nevertheless, as discussed in the next section, this method may be

employed to good advantage in numerical calculation.

6. Numerical Implementation

In attempting to actually solve equation (15) iteratively the equation is first
discretized, either using a Galerkin approximation or collocation, leading to an ap-

proximate, matrix, equation
LWN) (N} = p(N) (44)

where w(") and FN) are N dimensional vectors and L(™) is an N x N matrix. Then
these matrix equations are solved iteratively using the algorithms |

w,(,gll = (I = aLW)u{N) 4 o N) (45)
and |
Wi} = 1 — LW [N),(N) 4 o [(N)s p(N) (46)

where L(N)* is the Hermitian transpose of the matrix L(N). An operation count
shows that each iteration in the eigenvalue shifting or generalized over relaxation
method, (45), requires one matrix-vactor multiplication or N2 operations while the
Bialy scheme, (46), requiress two sequential matrix vector multiplications (which is
more economic than forming the matrix product L(N)* L(N )) or 2N? operations per



148 Journal of Computational Mathematics Vol. 7

iteration. Comparing the operation count in solving (44) by Gaussian elimination,

8
—I%—, with nN? and 2n N2, the number of operators needed for n iterations in each

of the above methods we see that if the desired accuracy is achieved in less than %T_

or %r— iterations, for the generalized over relaxation and Bialy methods respectwel}',
then these aolutmn methods compete favorably with Gaussian elimination.

Critical to the rate of convergence of the sequence of iterates is the choice
at the relaxation parameter a as was evident in the previous analysis. While an
optimal choice of o is possible only with the benefit of detailed knowledge of ¢(L),
it 1s still possible to use these methods to good advantage even in the absence of
such knowledge. In [14] the Bialy method, (46), was employed to solve the problem:
of acoustic scattering by a rigid obstacle I'. In this case A = ~ K  and a modified
Green’s function technique was employed to eliminate the occurrence of “irregular
frequencies,” values of k for which the homogeneous equation has nontrivial solutions
which occur at eigenvalues of the interior Dirichlet problem. The modified Green'’s
function method, proposed by Jones [6] and further developed by Ursell [21] as well

as [12], essentially involves adding a sum of radiating multipoles to the fundamental
solution (3). It has the effect of ensuring that L is bounded below, i.e., m > O.
Numerical results were found for a variety of simple configurations including spheres,
spheroids, and spherically capped cylinders however the relaxation parameter o was
chosen in all cases to be the same, namely the optimal value for a sphere which can
be determined because the equation may be solved exactly in this case. Despite the
fact that this choice is clearly not optimal for nonspherical shapes, it was nontheless
found that the Bialy method produced good results, residual errors of order 10~3, for
a modest number of iterates, sufficiently small so that the Bialy methud cnmpetes
favorably with Gaussian ehmmatmn in all cases treated.

Even more dramatic results are presented in [15] for the generalized over-
relaxation method (45). Since (L) is complex, the optimal a (that value which
minimizes r,{/ — aL)) will also be complex and a means of making a reasonable
choice without determining o(L) precisely is essential to the successful implementa-
tion of the iteration method. One method of choosing a proposed by van den Berg,
a8 described in (15|, consists of finding that o which minimizes ||(I — «L)F||. A
necessary condition for this function to be a minimum is found to determine « to be

_ (F,.LF)

ILF 47)

As reported in [15], this choice makes the generalized overrelaxation method (45) re-
markably effective in a variety of examples including the boundary integral equations

considered here.

The iterative methods described here will never successfully compete against
" more sophisticated techniques such as multistep nonstationary Richardson or con-
Jugate gradient methods if storage is not limited or extreme accuracy is needed.
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However if only modest error criteria need be met and storage is limited then the
extremely simple algorithms discussed in this paper can yield useful numerical results
with a minimum of computer size, computation time, and programming complexity.
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