Vol. 7 No. 2 Journal of Computational Mathematics April 1989

LARGE MATRIX COMPUTATIONS ON
VECTOR COMPUTERS®

YAU SHU WONG
(University of Alberta, Edmonton, Canada)

Abstract

Preconditionings have proved to be a powerful tpechnique for accelerating the
rate of convergence of an iterative method. This paper, which is concerned with
the conjugate gradient algorithm for large matrix computations, investigates an
approximate polynomial preconditioning strategy. The method is particularly

attractive for implementation on vector computers.

1. Introduction

In recent years, remarkable progress has been reported on large scale numer-
ical simulations for many practical problems in science and engineering. The rapid
advances in the field of computer hardware, in particular, the advent of supercom-
puter technology, have played a significant role in this development. It is important,
however, to note that in order to exploit the full potential of the vector or parallel
processors available on supercomputers, numerical algorithms must be developed
to take advantage of the specific computer architecture. Many standard numerical
algorithms, which have been very successful on the conventional scalar computers,
could become inefficient when implemented on the supercomputer.

The purpose of this paper is to study efficient numerical algorithms for large
matrix computations on vector processors. It is important to develop very efficient
numerical algorithms, because such a problem frequently results from a numerical
solution to partial differential equations.

* Based on the lecture presented at the China-U.S.A. seminar held at the Xidn Jiaotong Univer-
sity, December 1987. This work was supported by the Natural Sciences and Engineering Research
Council of Canada Grant U0375.

210 Journal of Computational Mathematics Vol. 7

2. Conjugate Gradient Algorithm

Consider the linear system
| Au = b, (1}

where A is a given symmetric and positive definite matrix. Now, introducing a
non-singular matrix M, Equation (1) can be rewritten as

AM *Mu=15. (2)

Equation (2) is known as the preconditioned system, and M is the preconditioning

matrix.

It has been widely accepted that the method of conjugate gradient (CG) [3]
is an efficient iterative technique for large matrix calculations. The CG algorithm
for solving Equation (2) can be summarized as follows:

Initialization. Start with an approximation to the solution vector u
pute the residual r® = b — Au®, and set the direction vector p° = M —1,0

Iteration. Forn=20,1,2,---, do:

Step 1. a, = (rnaM_lrﬂ)/(P":APn)'

Step 2. u™t! = 4™ + a,p".

Stpe 3. "t = ¢™ — o, Ap".

Stpe 4. Bp = (r"*t, M~ 1ent) /(P*, M 7117,

Stpe 5. p"tl = M~ 1e7H L 8 0",

The process is continued until ||r?*!|| satisfied a convergence criterion. The
inner product (z,y) is defined as =7y for any vectors z and y.

The CG algorithm presented here can be efficiently implemented on a vector
computer. For the CDC CY BER 205 computer with 2 pipes and 64-bit arithmetic,
the maximum computational rate for a linked triad operation (i.e., vector 4+ constant
* vector) is 200 million floating-point operations per second (Mflops). It can be easily
seen that Step 2, 3 and 5 are the linked triad operations. The two inner products 1n
Steps 1 and 4 can be computed by the Q8SDOT routine available on the CYBER
205 computer, and the maximum rate is 100 Mflops. The major computational work
for each CG iteration consists of the matrix by vector multiplication Ap and the
preconditioning step M ~'r. For large and sparse matrices, the non-zero coefficient
elements of A can be stored by diagonals. The computation for Ap can then be
efficiently implemented almost entirely using the linked triad operations {6].

The computational work for each CG iteration can be expressed as

0 com-

W=W,+ WP: (3)
where W), is the work for the basic CG algorithm and

W,=2+IP+3%xLT+1xMV. (4)

No. 2 Large Matrix Computations On Vector Computers 211

e

Here IP, LT, and MV denote operations for the inner product, linked triad, and
matrix by vector multiplication. Wy, is the work resulting from the preconditioning
step M~ lr,and W, =0if M =1I. It is then clear that the basic CG algorithm 1s
suitable for coding on a vector computer, and this leaves only M ~1y unvectorized

when M # I.

3. Preconditioning Techniques

The rate of convergence for the CG algorithm can be substantially improved by
the application of a good preconditioning matrix M. The important considerations
‘n the selection for M are that M~! should be a good approximation to A7l in
some sense, and that the preconditioning step M -1y can be conveniently computed.
The first condition ensures that the condition number of the iteration matrix AM ™1
will be much smaller than that of the original matrix A; hence, it results in a faster
convergence rate. The efficiency of the preconditioning depends upon the second
condition, in which it is desirable that computing M~1r (i.e.,, W,) takes about the
same as for W,.

A popular preconditioning procedure which satisfies these conditions 1s an
incomplete factorization algorithm [7}, in which

M=LU, (5)

where L and U are sparse lower and upper triangular matrices with non-zero ele-
ments appearing in the same location as A. The preconditioning step M ~ly can then
be computed via forward and backward substitutions, and the cost is about the same
as one matrix by vector multiplication. This technique has been very successful on
a conventional scalar computer, but its implementation is not efficient on a vector
processor. This is due to the fact that forward and backward substitutions involve
essentially recursive operations, and they are difficult to vectorize. Consequently,
only a small computational rate can be obtained for the preconditioning step.
Another approach which remedies this difficulty is to use a truncated Neu-
mann series for approximating a matrix inverse [2]. This is known as a polynomial
preconditioning. Suppose the original matrix has been scaled, such that

A=1-G, (6)

where G is symmetric with zero diagonal entries. If the spectral radius of G 15 less
than one, M—! can then be approximated by a truncated polynomial expansion in
G, that 1s

M l=(I-G)! EiG‘ | (7)

+=0

212 Journal of Computational Mathematics Vol. 7

e I e ———————

The preconditioning step M ~*r can now be computed via
Mlr=(I+G+G*+--+G")r. (8)

To improve the performance, Johnson et al. [5] and Saad 8] guggested a parame-
terized version for (8), in which

My = (vol + MG + ’)‘2G2'+ o 3 ’7ka)": (9)

where the parameters 7; are chosen to minimize the condition number of AM 1.
The computational work due to the preconditioning step M —ly expressed In
(8) or (9) is then essentially given by

W, =k LT + k* MV, (10)

‘f k terms are kept in the polynomial. Since G has the same structure as the original
matrix A, the arithmetic operations for Gr needed in W, is almost the same as
that for Ap required in W;. The computational work for each CG iteration given
in Equations (3), (4) and (10) may be dominated by W, if k is greater than one.
The question to be considered now is whether the cost for computing W, could be
reduced, and thus result in an overall improvement for the preconditioned algorithm.
The answer is that it is possible to achieve the objective for certain matrix problems.

Suppose a matrix operator A can be found in such a way that A is to some
extent related to the original matrix A. However, A consists of far fewer non-
sero elements than A. Then an efficient polynomial preconditioning for A can be
constructed in which the polynomial expansion is based on A rather than A itself.
As a consequence of A has less non-zero coefficients, the computational cost for one
matrix by vector multiplication required in the preconditioning step will be less than
that needed for Ap in the basic CG algorithm. To distinguish from the traditional
preconditioning based on the original matrix operator, this new approach will be

referred to as an approximate polynomial preconditioning technique.

4. Numerical Results

In order to illustrate how a matrix operator A can be constructed from a given
coefficient matrix A, two problems for large matrix computations will be considered.
Numerical experiments have been performed on the CDC CY BER 205 computer
with 2-pipe and 64-bit arithmetic. For the results reported in this section, the ini-
tial vector u° is composed of random numbers uniformly distributed on the interval
0,1], and the CG iteration is terminated when ||r||c < 107'°. The preconditioning
. technique is based on a parametrized polynomial expansion given In (9). The pa-
rameters ~; used for the problems considered in this section can be found in [9] and
[10].

No. 2 Large Matrix Computations On Vector Computers 213

Problem 1. Consider the three-dimensional Poisson Equation
~V*u+gu=f(z,y,2), inD (11)

and u(z,y,2) = U(z,y,2z) on 8D, where Viu = uzp + uyy + uss and g > 0. A
uniform mesh A is used to discretize Equation (11) by a fourth-order compact finite
difference scheme [1]. The resulting coefficient matrix has 27 non-zero diagonals,
and it has been scaled so that a; = 1.0. Suppose m is the number of grid points
in each direction, thus the total number of equations EQ = m>. The arithmetic
operation counts for one CG iteration is given by

W = (20 + 2k) + m® + (k + 1) * (52m> — 36m® — 12m — 4). (12)

The second term represents the major computational work which consists of one
matrix by vector multiplication (MV') for the basic algorithm and kMV for the
preconditioning step.

Consider a second-order finite difference method 18 apphed to approximate
Equation (11), The resulting matrix A will have 7 non-zero dlagﬂnala The arith-
metic counts for one MV involving A is then given by (12m® — 4m? — 4m — 4).
Although A and A have different structures (where A has 27 diagonals and A has 7
diagonals), the two matrices are to some extent related since they are both approx-

imating the same partial differential equation. Consequently, a polynomial precon-
ditioning based on A is not only good for the matrix A, but it can also be used for

A. The arithmetic counts for one CG iteration with this approximate polynomial
preconditioning thus becomes

= (204 2k) + m® + (52m" — 36m? — 12m — 4) + k + (12m> — 4m? — 4m — 4). (13)

Let EP and AP denote exact and approximate polynomial preconditioning,
and ignoring m? and other lower-order terms. The computational work for one CG

iteration used in conjunction with FP or AP for different values of k is listed in
Table 1.

Table 1. Arithmetic operation counts for one CG iteration

k 0 1 ' 2 3
EP Tdm® 126m° 180m?* 234m3
AP T4m® 86m3> 100m?> 114m3

The work for the basic CG iteration is given for k = 0. Clearly, as the value
of k increases, the advantage in using AP instead of the EP method is apparent.
Notice that, preconditioning based on AP with k = 3 takes less work than EP

214 Journal of Computational Mathematics Vol. 7

with k = 1. The number of iterations (NI) and the computing time (CPU) in
seconds for the preconditioned CG methods with k = 3 for m = 19,29, 39 (i.e.,
EQ = 6859, 24389, 59319) are reported in Table 2.

Table 2. Values of NI and CPU

EQ = 6859 EQ = 24389 EQ = 59319
Method NI CPU NI CPU NI CPU

EP 22 0.177 30 0.844 41 2.817
AP 27 0.111 38 0.541 51 1.763

As can be seen, even the number of iterations is increased for the AP precondi-
tioning. The overall performance of the CG method with AP is more superior than
that based on EP method. In fact, a saving in computing time of more than 35%
18 obtained when AP is used instead of the EP method for the compact difference
equations. The methods have been tested for matrix equations up to EQ = 262 144,
and a similar improvement is obsered [9].

Problem 2. Consider a biharmonic equation

ﬁzu(x, y) = f(z,y), in D | (14)

with u(z,y) = Ui(z,y),Un(z,y) = Usz(2z,y) on 3D, where u, denotes the normal
derivative of u, and A4 = uzze, + 2Uzzyy + tyyyy. Using the standard central finite
difference scheme with a uniforni mesh A, the resulting matrix equation A has 13
non-zero diagonals. Even though A is symmetric and positive definite, it does not
possess the property of diagonal dominance. It should be noted that, the matrix is
very ill conditioned for problem 2, and it has a condition number 0(h~*) compared
to O(h~%) for the problem 1.

Suppose A has been scaled so that a;; = 1.0 . Difficulty may arise when
implementing the polynomial preconditioning based on Equations (8) or (9). Since
A 18 not diagonally dominant, the spectral radius of G, p(G), could be greater than
one. To alleviate this difficulty, the matrix G should be modified [10], such that

e Y (15)

o

wherew is a parameter chosen to ensure that p(G) < 1. A simple choice for w is
w = ||A||/2, where || A|| is taken to be the maximum row sums of A.

Now, how another coefficient matrix A can be constructed for A? It can be
shown that if A is the resulting matrix for a biharmonic equation, then A is related
to the difference approximation to a Laplace operator L in such a way

A=L*+E, (16)

No. 2 Large Matrix Computations On Vector Computers 215

W

where E is a matrix with small rank. It is then natural to consider a polynomial
preconditionary based on A = L rather than the original matrix A. Consequently, a
substantial reduction in the computational cost for W, results when k is large. This
is due to the fact that A has 13 diagonals, whereas A has 5 diagonals.

The number of CG iterations for m = 99 (i.e., EQ = 9801) for various numbers
of k is shown in Table 3. |

Table 3. Number of iterations for FQ = 9801

k 0 1 3 5 10 20 30

EP 5492 3024 1712 1203 685 379 261
AP 5492 2335 1002 623 200 142 97

et PR

Several interesting phenomena can be observed in these results. First, a large
number of iterations is required for the basic CG method (i.e., k£ = 0). This is
because A is very ill conditioned. Although the number of iterations for EP and
AP methods decreases as k increases, there is no improvement for the computing
time when k > 12. The CG with no preconditioning requires 19.3 seconds for
convergence, and it reduces to 13.1 and 2.2 seconds respectively when EP and
AP preconditionings are applied. For the biharmonic problems, the computational
results reported here indicate that the AP preconditioning 1s more effective than
the EP method. Not only the computing time per iteration is smaller for the AP
preconditioning, the rate of convergence is also faster compared to that based on
the EP method. It has been proved {4] that the condition number of the iteration
matrix AM™! is in fact smaller when the AP preconditioning method is applied.
The performance of the basic CG without preconditioning and that with EP and
AP preconditionings with k = 30 are reported on Table 4, where NI and CPU

denote the number of iterations and the computing time in seconds.

Table 4. Values of NI and CPU

EQ = 22201 EQ=30601 = EQ = 62001
Method NI CPU NI CPU NI CPU
CG 11673 03.7 19567 280.6 31462 716.1

EP 261 69.4 892 203.5 1470 5319
AP 182 10.2 297 29.6 442 69.5

216 Journal of Computational Mathematics Vol. 7

These results speak for themselves. It is clear that significant improvement
can be achieved when the CG method is applied in conjunction with the AP pre-
conditioning.

It should be pointed out that the iterative methods discussed here could be
applied to a more general problem. For instance, the bending of a thin plate n

elasticity requires the solution of |
Ay — §(Totuzz + 2Ty tizy + Tyuyy) = f(z,v), (17)

where u is the deflexion of the plate, § is the ratio of the thickness to the rigidity of

preconditioning described earlier could also be effectively applied for Equation (17).

In this paper, the CG method used in conjunction with a polynomial pre-
conditioning has been demonstrated to be very efficient for large systems of linear
equations. The technique could be easily implemented on a vector computer. The
idea of an approximate polynomial preconditioning method is introduced here, and
it has proved that for certain matrix problems, it is more effective than the standard
polynomial preconditioning based on the original coefficient matrix.

References

[1] R. K. Agarwal, A Fourth-order Compact Scheme for Helmholtz Equation in Curvulinear Co-
ordinates, in: R. S. Stepleman, ed., Scientific Computing, North-Holland, Amsterdam, 1983,

147-154.

[3] M. Dubois, A. Greenbaum, G. Rodrigue, Approximaté the inverse of a matrix for use in itera-
tive algorithms on vector processors, Computing, 22 (1979), 257-268.

[3] M. R. Hestenes, E. Steifel, Method of conjugate gradients for solving linear systems, J. Hes.
Nai. Bur., Stand,, 49 (1952), 400-436.

[4] H. Jiang, Ph. D. thesis, University of Albérta., 1988 {in preparation).

[58] O. G. Johnson, C. A. Micchelli, G. Paul, Polynomial preconditioners for conjugate gradient
calculations, SIAM J. Numer. Anal., 30 (1983), 362-376.

[6] N.Madsen, G. Rodrigue, J. Karush, Matrix multiplication by diagonals on vector parallel pro-
cessor, Inform. Process. Leil., B (1976), 41-45.

[7] J. A. Meijerink, H. A. van der Vorst, An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977}, 148-162.

[8] Y.Saad, Practical use of polynomial preconditionings for the conjugate gradient method, SIAM
J. Sei, Stat. Comp., 6 (1985), 865-881.

[9] Y. S. Wong, Solving large elliptic difference equations on CYBER 205, Parallel Computing, 6
(1988), 195-207. |

| [10] Y. S. Wong, H. Jiang, Approximate Polynomial Preconditioning Applied to Biharmonic Equa-

tions on Vector Supercomputers, NASA Technical Memorandum 100217, 1987.

	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg

