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Because of the variety of partitions which arise in higher dimensions, there so far is no
unified theory about multivariate spline functions. Briefly, we have two strategies at present.
One i8 the so-called classical approach. Since the work by one author of this paper in 1975
1], this method has been producing many results. Some dimension formulas, expressions of
B-splines and bases of some spline spaces on certain partitions were obtained {cf (2], [3]).
But calculations are complicated in the case of B-splines, as both smoothness and locally
supported conditions must be taken into account.

The second strategy is the polyhedral spline approach. This idea which originated
with a geometric interpretation of the univariate B-splines and multivariate splines was
obtained as the volume of slices of a polyhedron. Many results such as linear independence,
approximation rates and properties of spline spacesl have been gained. Choosing various
kinds of polyhedra, we have various kinds of splines. From recurrence relations in [6], it
is possible to get expressions of those splines, though the quantity of calculations is rather
large and polyhedral splines sometimes have large supports.

In this paper, we will give an integral method to construct spline functions, trying to
Iink up two strategies mentioned above. We will show the integral recursions for splines on
uniform partitions. If the original spline has a minimal support, it is possible to produce
minimal supported splines with more smoothness by the integral method, that is, we provide
recursions for B-splines. As spline spaces with maximal smoothness which include B-splines
are more useful, we also give bases of these spaces consisting of B-asplines and truncated
power functions. For the sake of clarity, we only discuss the case of two dimensions. The
results can be applied to higher dimensions without any virtual difficulty.

We introduce some notations first. The partitions Aj:

T
-.H'H.\.

r=t,y=jz—-y=kand Ay z=r,y=1,z2—-y=k,z+y=k,
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i, 9,k =0,%1,%2,---, are called cross-cut triangulation and criss-cross triangulation of uni-

form rectangular partitions, respectively. Let

ro=3(ny):i<e<i+l, 7<y<3+1, .
(z,9):i<2<i+1, 7Syss+], ::—-izy—?},

i’
res

|

which are cells of A;. Let

o = {(5,y)ri<z<i+1,j<y<s+lz-iSy-jz-i<i+l-y

Al

Wg}= (z,y):i<z<i+1,j<y<sj+Lz-i<y—gz—t27+1-y

w}f}= (z,y):i<z<i+1,j<y<j+lLz-i2y—jz—-127+1—y

(¥ ]

WE,-)= (z,y) ;v €z<i+1,j<y<j+lLz—12y— 72— SI¥l~y

which are cells of Ao. If k, u are nonnegative integers, S (i), = 1,2, 1s a space of bivariate

pp functions in C* of degree k, that is

SE(A;) = {s(z,y) : 8z, y) € C*(R?); s{z,y) € Px, when (z,y) € cells of :&,-},
i=1,2.

If B(z,y) € S£(A:),1 = 1,2, and T is a bounded region in R2 so that B(z,y) > 0 when
(z,y) € int (T) and B(z,y) = 0 when (z,y)€ int (T), we call B(z,y) a locally supported
spline for short. By B-spline we denote a locally supported spline with a minimal support.

From [2] we know that a mecessary condition for the existence of a nontrivial lo-
cally supported spline in Sf'(A;) is that k, 4 satisfy the inequality k > {3u + 1)/2, and in
S%(Az), k > (4p+ 1)/3. We will prove that they are also sufficient conditions. Let d be the
smallest integer satisfying d > (3u+1)/2 (for Az,d > (4p+ 1)/3); then S5(A;),s = 1,2, are
spline spaces in C*(D) with the lowest degree which contain B-splines. The existence and
recursions of B-splines in 5% (A;) and in ordinary spaces will be investigated. Box-splines in
S¥(A;) may not have minimal supports (cf 4]), so our integral method is somehow superier
to the box-spline method. Besides, we will show two examples to treat splines on non-

aniform partitions with the integral method. Finally, for rectangle .2 and refinement A%,

of partition A; on D, we will make bases of Sy (ﬁ,[.,i]n, D) consisting of mainly B-splines.

§1. Existence and Construction of B—Splines in S7(A1)

Lemma 1.1 If B(z;y) is a locally supported spline tn §%(A,) with support T (shown
in Fig.1) end A(T) = (a3, az, as, G4, a5, dg) where a;,¢ = 1,2, -,6, denotes the number of
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cells snciuded sn the ith side of hezagon T. Then

Fig. 1

z+1
BW)(z,y) = f il iida,

y+1
B3)(z,4) = B(z, u)du,

Y

y+1
B{aj(m,y]=/. Blu,u— z + y) du=[ B{u—~y+ z,u)du

+ ¥

Z==1

are all locally supported splines in Sf+1[&1) with supports T(”,T[?],T(a), respeciively,

where
| A(T“)) = (ﬂl + 1,as,a3,a4 + 1, asg, a'ﬁ)!
A[Tm] = (a1, a2 + 1,a3,a4,05 + 1, ag),
A(Tfa}) = (a1, 82,a3 + 1, 64, a5, a¢ + 1).

The proof of the lemma is easy, so we omit it.
Recalling the definition of d, we see that d = 3s + 1 when =28 ,and d =33+ 3

when p = 2s + 1. Now we discuss the existence and construction of B-splines in S2¢,,(A)

and S3713(A4).
By Bo(z,y) we denote a B-spline in SP(A;). Its support is shown in Fig. 2 and its
representation in the sth cell is p;(z,y),2 = 1,2, .- 8, where

p:(zly)=1"—y1 p:(zly)=2_.zl
r{z,y)=2~z+y, p(z,y)=1+y, .
Pe(z,9) =2, p,(z,9)=2—y.

Theorem 1. There ezists a B-spline in SE(A,) if and only sf k > (Su+1)/2. And
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we can construct locally supported splines by antegral recursions as follows.

Fig. 2 ;
1) If a B-spline By, (z,y) € S22 ,(Ay) with support Ty,, and A(Tz,) = (a1, a2, a3,
G4, G5, aﬁ]: then

i v+1 v—y+z+1
Bé,h_l(m,y] =[ du[ B3, (u, v)du,
i v

. z+1 v—z+y+l
BLLI(::, y) = f duj B3, (u,v)dv

— x4y

are two linearly independent locally supported splines in S213 (A1) wsth supports Té:‘l i Téﬂ 1

respectively, where

A(Té:.)q.-]_ = (ﬂ-l P 11 az,a3 + 1,a4 + 11 as, ag + 1):

A(Téﬂl) = (a3, a2 + 1,83 + 1,04,85 + 1,86 + 1}).

z+1
2) By,+3(zy) = f BgEH[t, y)dt 13 a B-spline in S2:32(A,) uwath support Iz.42,
X
and '

A(T2,42) ={a1+ 1,02+ 1La3+ 1,84 + 1,a5 + 1,a¢ + 1).

Proof. Note that B%Bgﬂ.g(z, v}, E%BQHQ(E, y) € S3213(A1). Recalling Lemma 1.1
~ and the properties of the integral, we know that the results are valid. So a sequence of locally

gsupported splines { Bg,(z,y ,B{l} z,y ,B{z} (z,¥);¢ = 0,1,2,--- ¢ can be constructed
25+1 I2r+1

from Bo(z,y); Bz.(z,y) is in 837, (A1) with support Ts,, and B;i!l,l(:r, y),Béﬂl(::, y) are

in $2:31(A,) with support Téﬂ-nTzﬁn

A(Tz,) = (s+1,s+1,s+1,3+1,s+l,a+1),
AT ) =(s+28+1,8+2,8+2,5+1,5+2),

A(Tfjﬂ_l)=(s+1,3+2,3+2,a+1,3+2,3+2).
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.
Accroding to Theorem 1, the space S¥(A;)(k > (3u + 1)/2) contains a B-spline.
Take a B-spline B, (z,y) € LS’:D“ (A1) C {SK(&I); k> (3u+1)/2
By (x,y). Then we have the following propositions.
Proposition 1. For ky, k3, k3 =0, 1, 2, -, f

, and set By g o(z,y) =

z+1

Bk1+1,k,,l=.-.(I: y) =/ Bk:.k:,ks(“:!’)d“r

z

v41

By, kst 1.k (7, y) = By, ks ks (2, ©)dy,
u

z+1
Bkhk:.k:+1 (:1'.', y} - / Bkl,k:,ka (H, u-—-z-+ y)du:

H -

then By, &, &, (2,¥) is a locally supported spline in St (A1), where k = ko + k; + ky + ks,
and p = puo + ky + ko + kg — max(ky, k2, ks).
Proposition 2. Choose By ¢ (z,y) = By(z,y) € §? (A;) in Proposition 1 . Then

{B} = {Bl-f'h#,!: Bﬂ+t—11!+1.h T Ba.a+t,u:Ba,a+t—1,.-+1:
Bl:l+t—2.ﬂ+ﬂ: S B!,H.J'H-‘; t =0, 1: 2: g IIk — 32 — 1}

i8 a basis of $2*(A;), k> 3s + 1;

{B} a {Ba+t—-1,a+1.uBa+t—2,a+2,a: e B.u+1,a+t-1,n Bn,a-H—-lia—rl:
Ba,a+t—2,a+2: e Ba,u+1,l+t-—1; t=2,3,- - rk — 38— 1}

is a basis of §2°*1(A}), k > 35 + 3. Here S#(A,) is a subspace of Si' (A1) consisting of
locally supported splines.

Proof. The linear independence of {8} can be derived with the aid of their Fourier
transforms. From dimension formulas in [2], it is easy to verify that the dimensijon of S*(A,)
equals the cardinality of { B}. The conclusion then follows.

Proposition 3. Choose Bo(z,y) as Boo,0{z,y) in Proposition 1. Then

+oo  +oo -
Z E B‘Fl.k:.ka (E +my+ ﬂ'] =1, (:t,y] & RE,

mMm=—o Nn=—00o

+ oo
f/. Bhl,k;,ka (xl y) dz dy o 1'

Proof. Tt is obvious that By o0(z,y) has these properties. From the definition of

and

Bk, ks,ks (2, y) in Proposition 1, we know this proposition is true.
Proposition 4. The Fourier transform of By 4, &, (z,y) is

F(Bkhkz:k; (Ely))(ul U) = gkl+1(u)gk=+l(u)gka+1(“ + U),
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where g(t) = (e** — 1) /it.

_J 1 z € {—1,0),
b(I)h{ 0 z&(-1,0). $

Then
F(b(z))(t) = g(t)

Proof. Set e
F(Bo(z,y))(u, v) = g(u)g(v)g(u + v).

Noting that

z+1
f B(u, y)du = B(z, y) * b(z),

Fig. 3

we have established the relations.

Next, we will show that B-splines in S%(A;) can be derived by the integral recursions
in Theorem 1,

Let Bo(z,y) € S3(A1). Its support is shown in Fig. 3 and its representations in the
:th cell is ¢,(z,y),t = 1,2, -, 7, where

ql(z,y)=%[m—y+1)2, ?=(I=y)=(1"y)[z"¥+%):
&(ny)=(1-2)(3z-y+3), alny) = i=+1)3
wl@y)=+1)z-§+3), elny)=2(1-2)+3y-z+1)(z-y+1),
¢ (z,9) = (1 - z}(y+1).

Proposition 5. Choose By(z,y) as an original spline, and construct By,(z,y) by
integral recursions in Theorem 1. Then Bs,(z,y) is the unique minimal supported B-
spline in S$?.,(A1),s =0,1,2,---. Choose Bo(z, y) mentioned above as an original spline
and construct Bé:!,_l(:r, y),Béfll_l(:r, y) by integral recursions given in Theorem 1. Then
Béﬂ_l(z, ¥), B;E,ﬂ_l[:n,y) are B -gplines in $3213(A;),s=0,1,2, -,

Proof. From their Fourier transforms, we know that By, (z,y) isthe same as M, , ,(z, y)
in (4] and Béi},_ Az, y), Béﬂl(::, y) are the same as Notvalz,y), N, . 1(z,y) in [4] respectively.
Therefore the conclusions are true. | "

Proposition 5 reveals that if we choose original splines properly, B-splines can be
obtained by our integral method. Besides, we can get locally supported spli.neﬁ on certain
nonuniform triangulations. For instance, making a partition with lines A : z = 3¢,z =
3+ 1,y=3t,y=3t+1, t'=0,1,2,--, and then adding all upward slopings in cells of
A, we have a nonuniform partition A,. Let Bj(z, y} be a B-spline in S2(A;) {this is easy

== )
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z+3 y+3
to obtain), and define B3, (z,y) = f duf B;{,_”(u,u]du,a > 1. Then B3,(z,y)
x v

is a locally supported spline in 83,.,(A1),8 =0,1,2,--" Furthermore, if A is a partition
obtained from a geometric rectangular partition consisting of lines * = ah! + zo, y = bl + yo,
i,7 = 0,%1,42,---, by drawing in the same diagonal in each square, we can produce B-
splines in s§;+1(3) and ng_‘f_'%(i) when h = I (cf [7]). So we say that the integral method

‘2 more flexible than the box-spline method.

§2. Bases of Spline Spaces 5} (Ath, D)

Set D= {{z,y):a<z<bec<y= d},h=(b—a)/m,i= (d—¢)/n, zi = a+ih,y; =

e+l (§=0,1,2,---,m; 57 =0,1,2,---, n), and partition AL of D consists of lines

I = z;,y=y,~,(z—z.-,)fh= (y'—yj)fl: £=0111?l"':,m;1. =011:2:"':ﬂ-

For every nonnegative integer u we will give a basis of S: (aﬂL, D).

Theorem 2. For every integer 3 > 0, a basis of Saﬂ:_l,l[ﬁgl,ﬂ) ¥

E* = {Ba((z— z)/h— 2, (y— ) /1~ 1) (z — 20)*(y — ¥ R

(v — vo)* (2 — 2)3 %+, ((z — 20) /A + (v — o) /)" -

% ((y — go)/ — (2 — z0)/h+ r)3+2**, (z — 20)"(y — %0)%
t=12---,m—13= 1,2 s m— 1
r=1—-n,2—n,---,m-—1,0£u+v£a, 0<p+qg<3s+ 1};

(B, ((z - z)/h— 1,(y - v;) /i~ 1), B (le — =)A= Ly —¥i)/t = 1),
(2 = zo)*(y — )52** 2, (v — wo)* (=i — B)F+%, (= — =o) /A + (v — wo)/1)"
x(r — (z — 70)/h + (v — %0)/D3***2, (z — 20)"(y ~ ¥0);
£=1,2,*--,m—-1,3'=1,2,”-,“—-1, r=1-n2—-n,---,m—1,
Oﬂu+u$a+1,0£p+q_f§ 33+3},

E21+1

where Ba,(z,¥), BéiLl(z,y] and Béﬂ_l[:r, y) are the same B-splines as in Proposstion 5.
Proof. Because |2]

dim S4(AW), D) = n(k) + (2m+ 2n — 3) - n(k — p+ 1) +d(3)(m — 1){n 1)

where .
a(6) = S+ 1) +2),
1 u+1
d(n) = S(k—p—[(p+1)/(n- )4 ((n = Dk — (n+Dp+n=3+(n-1)——3)
the cardinalities of E2* and E2**1 are equal to the dimensions of S2. . (A,) and S3;{3 (A1),
' respectively. So we need only to prove that E2* and E2°*! are linearly independent, respec-
tively. Here we determine the linear independence of E2**'; that of E?* can be got in the

same way.
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Assume there are a‘{:), g),b,w,c,w,d,w,ew so that
m—1ln-—1
(1) (1) [,,. %) Wow)y, @@ (z-=) (v-y;)
ZE[ BEJ+1( woi g ) l_lj)+ JB'ZE+1( i1 ) I—l )]
i=1 y=1
e Z: [ijuu(z-mﬂlu(y Yy u+2a+2+ Z c“w(y yo)u[m' E)u+2a+1
ﬂ{u+u{u+1 =1 ' i=1
N INIELO PR TS R CEES I
r=1—-n
+ D epglz— Z0)P(y~ %) = 0. (+)
OLp4+g<3s43

Set
r}:.] — {(::, Y): 2 <2< Ziv1, ¥ S ¥ < (Y541, (T — 2) /R < (v — yf)ﬂ}’

r{f} == {[I, y) 13 Lz < Tiy1, ¥ Sy < ¥5+1, (:l: giié mi)/h.ﬁ (y o yJ')ﬂ}’

t=0,1,.- . m—1;=0,1,... n—1.

If (z,y4) € r( ) " 1,01 (*) becomes

D epglz—20)"(y — %) =0,
0<p+q<3a+3
which implies
€peg =0, O0<p+¢g<3s+3."

Let (z,y) € "En)-l o' E:ll 1.7 211 12 ¥ .[:) 1,2» ?'E:}—Lm“': S:)-1 n—1; 21—1 n—1y successively.

From (*) we infer

d,.m,=0,r=m—1,m—-2,--~,m—n;0£u+u£a+l,
bjuv =0, =1,2,. .- . n—-1,0<u+v<s+1.

Next, let (z,y) € r . )2n~—1:"(1?-2 n-1: E:}—s n—-llrr[r:}—.?..n-li ":g rl—l:"é -);-1: successively.

From (*) we infer

d,..,,,,=0,r=m—n—l,m—n—2,~-,1—n;05_u+uSa+1,
Ciwe =0,8=1,2,-- . m—-10<ut+v<s+1.

y+1

z+1 (1)
Because B:z.-+1 (z,y) = f f(u, y)dy, B‘.‘h+1(mi y) = f f(z,u)du, Bz, ({z—Fm-1) /b~
z 4

1,{y ~ Yn-1)/l — 1} and Béf!l_l((m — Zm-1)/h — 1, (¥ — Yn-1)/1 — 1) are linearly inde-

pendent of ri, ]211. 2: 80 let (z,y) € "E::} 2,n=-2 Er:j 3,n-2" "'tfrlr{ 29:°% (11_2 n—3) "i:?—a,n—s:
rg,li_a, ,r,,:] 2,017 f,:) 3.0 " ,rf:,f,}, successively. From (*] we infer

) =l = 8, A= 50, i Tid = 18, m— L
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—__________—_——————‘—_—-—__

So the set E2°*! ig linearly independent.

§3. The Existence and Construction of Locally
Supported Splines in S} (As)

Denote an octagon T as shown in Fig. 4 by A(T) = (a1, 82,83, 84, 85, 86, 47, 88},
where a; is the number of rectangles included in the tth dege of Tyt = 1,2,---,8.
Lemma 8.1. If B{z, y) € S¥(Az), its support is T and A(T) = (31,03, -, a8), ther

Bi(z,y)= | Blu,y)du

r—1

nd
e Y a; =1

Ba(z,y) = B(z, u)du

y—1

belong to Si.,(Az2), and the supports of 98 =1
Bi(z,y) and Bz(z,y) are T} and T3, respec-

tively, where
ay =1

A(TI) = (":“']-I“‘:"2 + 1,a3,084,05,86 + 1:“‘7:'13]:
' A(T‘Z] = (ull Gg,a3,84 + 1,a5,8¢,87,88 + 1)-

| Fig. 4
Lemma 8.2. If B(z,y) € St (A2) and sts support 1s T, where A(T) = (a1,02,-**,68);
then '

By(sy)= [ Bluy—z+u)ds

r—1

and
z+1

B{z, y) =L B(u,y + z — u)du

belong to St ,(Az), and the supports of B3(z,y) and By(z,y) are T3 and T, respectively,

where
A(Ta) == (ﬂl + 1,a9,a3,0a4,065 + l,ﬂﬁ,ﬂ'?,ﬂa),

A(T,) = (a1,a82,02 + 1,04, 05,a8,67 + 1,as).

The validity of Lemmmas 3.1 and 3.2 are obvious.

Next, we consider the existence and construction of locally supported splines in
S9(Az). When p =1 and d = 2, there is a B-spline In S1{Az) and its support 18
(1,1,1,1,1,1,1,1) (cf [3]). We can construct locally supported splines in 57(A2), 53(Az),
S&(A3) in the following way (the number of linearly independent splines obtained 1= 3, 2, 1,
. respectively); then we construct those splines in S2{A3z), - . Generally, if we have a locally
supported spline in S;F13(Az),k=0,1,2,:--, we will produce smoother splines with local

support by three steps.
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| i) Construct BY (z,y) € Sintd(Az) from B(z,y) € SJET(AL), 5 = 1,2,3, where
the support of B(z,y) is T,

™ A’(T) = (ﬂliﬂﬂl a3, a4, 45, Gg, a7, ﬂ-g),

and

4 z+1
| B£ }[:c,y) =f B(s, y)ds,
(2) y+1
B (z,¥) =f B(z,t)dt,
y

z—1
Bia}[s:, y) = f B(s,y + = — s)ds,

i x+1 4 v+1 v+z—y+1
B( )(m,y] _/ B( ][u v+ y-— z) du-f duf B(s,v)ds,

+z—y
2 z+1 v+y—x+1
B }[3 y) = [ B( }(“ "+y—=ﬂ]dﬂ"/ duf B(v, t)dt,
v4y—=x
(3 z+y+2 (v+y—x~2}/2
){z y]-—/ B( }[u v+ y— :r:)du---f du[ B(s,v — s)ds.
% 2 x4y (v+y—=x)/2

B(’- ) (z,¥),7 = 1,2,3, are all locally supported splines in Sext2(Az) with supports
T“} T(g) Té ), respectively, where

A(Tél}) o (ﬂllaﬂ + 1: as + 11 d4,0a5, 06 -+ 1: ar -+ l,ﬂg],
A(Tézj) = (ﬂls a2, a3 + llﬂ-l + 11 a5,0¢,87 + 1: ag + 1):
A(Tta)] = (a1 + 1,az,a3 + 1,a4,a5 + 1, a6, a7 + 1, ag).

ii) Construct locally suppurted splines B[ }(:c, y), B[ }[:r:,y) € Sixid (Az2) from
B;')(z,v) € S3{2(4a), 5 = 1,2,3, by

(1) & y+z— u+1 v—Zu—z—y+1
Bﬂ (II y) = }(u y+ J:"‘u)dﬂ- = / du[ ./ B[ﬂ,ﬂ)dﬂ
. Y v

+z—t —~2u—2—y
2 z—1 v—2ut+z+y+1
Bé )(z, y) =f B( )[u ¥+ z— u)du —/ du/ du/ eron B(v, t)dt,
x v—du+z+y

Their supports are Té” and Tf), respectively, where

A(Ta(”] ={a1+ 1,62+ 1,a3+ 1,aq,a5 + 1,86 + 1,67 + 1,as),

A(Tém) = (a1 + 1,a2,83 + 1,a4 + 1,05 + 1,8¢,a7 + 1,ag + 1).
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_________________________________ﬂ________________________—___—____;_—_____

" iii) Finally, construct

z+1 a—1 u+tl v—2utyte+l
ds f du f dv f B(v, t)dt.
’ "

v—2uty+e

By(z, y) =f: B (s, yldﬂ —[

X

It ] ted sph S“*““& th rt Ty, where A(T,) = (a1 + 1,02+
& ﬂl: i oca X_suppnr e, l::;1:'_'_1111»,111 ( %BWI support T ere A(Ty) = (a1 as

By these steps, we finish a cycle of constructing locally supported splines. Doing this
repeatedly, we obtain all locally supported splines in Sz (Az) and can prove the following
theorem.

Theorem 3. There are lﬁm”y supported splines in Si (A2) ff k> iﬁ;—l We can
produce locally supported splines 1n S*(A2) by the above-mentioned integral recurstons.

Because of their different Fourier transforms, neither of the ten locally supported
box-splines in [5] is the same as any locally supported spline constructed here. In fact, these
splines have smaller supports than box-splines in the same space.

Next, we give bases crf Sk[ﬁ,(ﬂ.,,D) where D = {(z,y):e <z <bec<y<dhh=
(b5 —a)/m,l = (d— c)}n,fh 21. is a partition of D consisting of lines z = z; = a+ihy =
y:'-*¢+Jl,==+y—$;+y_,,:r—y=z, y;,t =0,1,-- .,m; 1 =01,

By a similar statement as used in 7], we can prove the following theorem.

Theorem 4. The basis of S3+2(A%), D) is

gt = {Bgﬂ,z((z — z)/hy (y — ¥i)/1), Baena((z — =) /hy (y = 95)/1);

B . ((z - =:)/h (v~ 43)/D), (@ — 2m)* (y; — )T,
(i=12,---,mji=12-,n—-10ss+1 <k+1,(s,t) # (s5k42 t3x+2)s
r=1,2,3); (v — yo)° (= —m)i""'“‘.‘(i =12 ,m—-1,0<s+t<k+ 1);
(z — 20 +y — %0)*{(z — 2o) /A + (y — go) /1 — v} P (u=1,2,
m+n—10<s+t<k+ 1];(x—xu+y—yo)'([y—yn]ﬂ

—{:n—:no)fh-—u)i“"a“‘*‘a(u:1-n,2—n,---,m—-1—n,0£a+t£k+ 1);

(z — zo)?(y — :;Ju]"(ﬂ <p+g<sdk+ 4)};
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the basis of SEI3(AR), D) is

P+ = {Bihs((z— 2)/h (v~ 4)/1), B, 5((= — =) /by (v - 45)/)
(=1,2---,mi=12 - ,n—1);(z - z,)°(y; y)itakte(y; = 1,2,
ran—1,0<s+t < k+1,(st) # [3§k+3: se+3)r = 1,2); (v — w)*
(z — )P (=12, . m~1,0< s+t <k+1);(z— 20 +y — w)*
((z—20)/h+ (y—wo)/l —u)3F " (u=12,- - . m+n—1,0<s+¢
<k+1); (: - Zo+ ¥ —yo)’(—(z—zo)/h+ {y — yo) /I —v)3Fttt(y=1-n2—n

m—-1—-n0<s+t<k+ 1};(z—xu+y-;yu)’((z—zn)jh

-—(y——-yo)ﬂ+u)ﬂ,+3"+‘(u= m-nam-n+1l- . m-10<s+t<k+1);

(I—zn}”(y—yu)“(0£p+q£4k+5)};
the basis of Sfﬁi’é‘(ﬁﬁ};, D) 1s

portt = {Bagﬂ([-r —z)/h v - y) /D= 1,2, ,m,5=1,2,---,n - 1);
(z—2zm)(y; — )3 (=12, - ,.n—-1,0<s+t < k+1);
(vy—wo)*(zi — )5 (i=1,2,-- - m—-10<s+t<k+ 1,
(s,¢) # (s3K+4, tsk+4))i(z — zo —y + ¥)*((z — zo) /A + (y — vo)/1
,—u]f,_‘*‘a""“ﬁ(u:1',.2,--*,m+n-;1,0£a+t£k+1];[::-—:|:u+y-—yo]'
((y—w)/l—(z - ::.;.)/h-—'t:)i"‘a"‘%(u=1—n,2—n,---,m—-1—n,
0< s+t <k+1);(z~ 20 +y— y0)* ((z — z0) /A — (y — yo) /I + v)¥3K+5
[v=m-nm-n+1,-- - . m—10<s+t<k+ 1); (z — zo)?{y — w)?
(0<p+g<k+6)},

where ("5&+2:t5k+2) = (br,cr)ir = 1,2,3, which satisfy

1
oo T T

3 2 4
det zél .}t'-'l zl{: .)ﬂ: zf-(’l -]'33 ?é 0,
3 3 3
P zii ,) €1 zf{a 1}‘51 zl(i: .) c3

and zg], r=1,2,3, come from

____.--*".; H
: } : |
Bg:J_FQ == zg) Ibyﬂ+3k+3, (I, y) & an}_l'n_g, r= 1, 2, 3,
0<b+tc<k+1
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and (35,3, t5kss) = (dryer),r = 1,2, which satisfy

(1) (1)

Waiex Wdg,ey
det 0
(2) (2) 0

u‘dl,cl "'Ldg,c:
w(r] r=1.2. come frnm
de B

1
Bg;:)-i-ﬂ = E w&:) mdye+3k+4’ (:E', y) € wsn)—l,n—ll r=1,2,
0<d+e<k+1

and (33k+4:t3k+4) = (Q, h) COmes fram

— h+3k+5 (2)
Bak+-l i Z "ﬂhzgy M ? (I: y) € Ym—-1,n—-9
0<g+h<k+1

and vgn # 0.

§4 Symmetric B-spline functions

If the support of a spline is symmetric with respect to its centre and grid lines passing
through the centre, we call the spline a symmetric spline and its support a symmetric
support. A locally supported spline with minimal symmetric support iz called a symmetric
B-spline. In this section, we will consider construction of symmetric B-splines using an

integral operator which is an accumulation of four integral operators shown in Lemmas 3.1
and 3.2 that is,

= [ o[ a7 ] stena

if f(z,y} € 5;'(Az). | .
Choosing original splines B}''(z,y), By (z,y) € §2(Az2), Bi(z,y) € S3(Az) (cf [3]}
and B3''(z,y), Bi?(z,y), B?®(z,y) € SZ(Az) (cf [8]) (they are all symmetric splines), we

will construct symmetric B-splines in S3F , (Az), $EF2(Az2), SiF1E(Az), respectively.

@Blﬂil Bf‘l

B} and Bi'ﬂ

Fig. 5
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Definition. If ¢(z,y) € S; (A3) and has support as shown in Fig. 6, we call it a

simple spline and denote it by

ii"t(:‘:'.l y) o (Pl (x: y)lp'i(z: y): PB(E: y])

For a rectangle
D= {(m,y] :nggm,ﬂﬁyﬁm},

It s easy to prove the following lemmas.
Lemma 4.1, For ssmple splines

cl{:: y) o (—'yilml U),cg(z, y) = (Uly +z,y - z]l
¢ basis of S (Aa, D) s

{cl(z—i,y-j](t' e 1,2,‘”,1’“,]-: ""11 _21'”Iﬂ_ 1);
ﬂﬂ(x_ily"j)(i =0,1,-- ,m3=0,1,---,n~ 1);52(5*”‘:3""1]}'

Lemma 4.2 For a ssmple spline
ca(z,y) = (29%, 24" ~ (z+¥)?, (z—9)°),
a basss of S}(Aa, D) 1s

{ca(x—i,y-—j)(i=0,1,“-,m+1, €2
j==2,-1,,n=1,65) # (m+1,-2))}.

Lemma 4.3. For ssmple sphnes

ca(z,v) = (0,(2 + ¥)°(3z — y), (= - v)°(32 + y)), ri1(z,y)
es(z,y) = (4y*, (z — y)* + z°(4z + 16y), (z — y)¢), —
cs(z, ¥) = (v*(2z + v), 2*(z + 29),0),

a basis of S2{(A3, D) 1s Fig. 6
feale =i,y =)= 0,1, m+ 15 = =2, =1, = 1,(5,3)
#(m+1n—1),(m+1,-2));
es(z—4,y—7)i=01, - m+L,5=-2-1---,n—1,(7)
# (m+1,~1),(m+1,-2));

cﬂ(’:_ilyiﬂ J.](‘= 1121”':"""' IIJ‘= _2:_1:"':“_ 1: (‘.:J')

# (m+1,-1), (m+1,-2)} }.
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e

Define integral operator
+00 |

ho=[  an BO=[
-

- QD

4y, 5= [ 4z wO=[

—-00— |, ¥

where I, Iz, I5, I, are integrations along directions ej, e2, 1 + 2, :i — &9, respectively. One
can verify that if p{x,y) is a simple spline in S;’(Aj3), then (LI II)"p(z,y) is a simple
spline in Sf:_',_": (Az),n=0,1, -, where the order of integrations is exchangeable. Further-
more, we have the following results. ‘ ‘

Lemma 4.4. Translates of simple splines (I oJal ) ei(z,y) and (hlalals) cs
(z,y) can form a basss of S¥ (A2, D); those of (Illgfah)"c.;(::,y],(Ilfgfah)"ca(:r, y)
and {1 2 IsI,) ce(x, y), o basss of Ser1i(Aa, D); those of (L1131 1.) es(z,y), o basss of
S3rti(4s, D).

4 |
Proof. We need only to note that (5—33,55 —~ E-f—;y-g) f € S272(A3) by definition of

the smoothing cofactor in [1] where f € S£'(A3), k > 4,5 2 3. Then we infer the conclusion
by induction.

Writing out their expressions, we see that the first and third parts of (I} Iafs]y)" |
€1 (I, y), [11 Igfafg]rcg(ﬂ, y], (Ilfgfs.h)rﬂg(:t, y), (11131314}"c4_(=, y], (Ilfgfafq,lrcﬁ(ﬂ:, y), and
(I Lo Is 1)  co(z, y) have factors > ** and (z - y)3r+2, y3r+3 and (2 — y)>*1,y* 2 and
(z_y]3r+2' y3r+5 and (I_y)3r+3, y3r+4 and (z_y)sr-t-il' yﬂr+3 and (I_#y)ar-'r&' reapectively.
We will use this factor in the proof later. | 1
Define the area shown in Fig. 7 by {lan (where {lyn = {1y U Ix and shadowy

triangles w, and wg do not belong to Qarn).

Fig. 7
Defilnition. Spline spaces 5S¢ (huﬂ') consist of such splines that when f(z,y) €
SP(Daen), there is an F(z,y) € S;/(A3) s0 that

F(z,y) = { : (©9) €1 Vw0 {(m3) v <0} u{(a) sy -z <0},
| -f(ﬂly): (Iiy)enﬂﬂ.
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Lemma 4.5. Ifpp(z,y) = z* + 812" +-- -+ 8.2+ 89, and &;,83, -, tx are all

1.I

real numbers, then |
N |
Ztipk(z —i) = {)
s=0

sf and only sft;,s =0,1,---, N satisfy

tot+ti+itz+---+ty =0,
i Dbk s o Nl
t1+22t:+”'NgtN=0,

8y +2%t3+ -+ N5ty = 0.

Proof. Because

N K

St Y sz = 3003 0,0 Y-V,
= =0 g=0 j=g §=0

let ¢ = k, and compare the coefficients of z* on both sides; let ¢ = k — 1, and compare the
coefficients of z*~! on both sides; and so on. Then, we get the result.

Theorem 5. There ezisi symmetric B-splines B 1e(z9)r = 1,2, in S3E,,(As),
k=0,1,---, where

B?:E(z! y) = Bf'r (=, ¥), B?:;(n:, y) = Uk(Bf’r(:c, y)),r=1,2k=0,1,---

Proof. We know from the abmre discussion that B +(z,y) and Bi' x (%, y) are linearly
independent. For any f(z,y) € S35, (Qrmn), we have from lemma 4.4 |

flz,¥) = q,.,t’f(z+M,y)+~-+qlc‘f(z+1,y]+aoc (z,¥) + - +ancy (:-N,
y_N)+G—M¢§(I+M:y}+“'+C—1ci(z+1 y]+G'uc2[:r,y)+
+Cnci{x— N,y— N)

when (z,y) € Qan, where c¥(z,y) = (I1 Iz 1)*¢c;i(z, ¥),5 = 1,2,. So with aforesaid facts,
we getl -
ck(z,y) = (2% + - Jy** ! + do(2* 1+ - )R 4 o(y®F 1),
ez y) = ("' + - )p*F+2 + o(y**+),

when (z,y) € wg; and
c¥(z,¥) = (z ~ ¥)**Pri(z, 9), (2, ¥) = (2 — 9)>*Hre(z,9),

when (z,y) € w;. There is no factor (z — y) in ri_1(z, y) and ri(z,y).
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Let f(z,y) = 0,(z,¥) € w,,r = 1,2, which, by Lemma 4.5, is equivalent to the
following systems of equations having non-sero solutions

ay + 2k-lg, + .- '+thlﬂy = 0,
a; +2% 3%+ -+ N--2ay =0,

a1 +2a3+--+ Nay = 0,
agg+aL+azt+ - +an =0, (1)
T -+ 9, +ao =0,
MqH+"'+QI. =DI
quu_'_..-—*-ql =0,
Cl+2kCg+'”+NkCN = 0,

Cl+2k_102+“'+Nk-IGH = 0,

C;+2C+--+ NCxn = 0,

Co+Ci+Ca+--+Cn =0, (IT)
C_yt+ -+C_1+Cp . = {,
MC—M+"'+C_.1 =ﬂg
"M*C_p + -+ C = 0.

If a non-sero solution exists, for the system of equations (I) the smallest permissible
value of (M, N) is (k + 1,k); for (II) it is (k,k+ 1). So the splines corresponding to f{z, y)
are BYL(z,y) and By's(z,y) € Sif,1(Az) with supports (k+ 1,k k+1,k k+ 1,k k+1,k)
and (k,k+ 1,k k+ 1,k,k+1,k,k + 1) respectively, k=0,1, - - -. The proof is finished.

Similarly, we can prove the following conclusions.

Theorem 6. There exist symmetric B-splines Byr(z,y),r = 1,2,3, in Stz (A2),
k=01, ---, where Bf:;(z, y) = B3 (z,y), r = 1,2,3, and Bii(z,y) = U (B" (z,9)),r =
1,2,3.

Theorem 7. There ezists a symmetric B-spline B} ,.(z,y) in St (Ag),k=0,1, -,
where

Béiﬂ(zl y) = B;(‘I-, y), Bé,h(zl y) = Uk(B;(Ir y),k=0,1,---.
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