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Abstract

In this paper, we shall give a new method for computing the weighted generalized
inversion of partitioned matrices, i.e. solve the weighted problems with the aid of
the unweighted ones, which is quite efficient and convenient for either dealing with
the inconsistent equations or computing the generalized inverses, now we discuss some
problems about the latter. The theorem 1 below is an extension of the main result in

[2], especially, thefpmnf is quite succinct here. o
§1. Preliminaries

Let F € C™*".P = P{ P;,Q = Q1@ are the triangular decompositions of the positive

definite matrices P € C™*™,Q € C™*", respectively.
Lemma. If G = Py FQT!, then the weighted generalized snverse ss

QTiGTP, = Q" F*(FQ 'F*)tF(F*PF)* F*P=Fp,,.

Proof. Let BC be any rank factorization of F, and G = P, FQ7! = P,BCQ7 ", then

the unweighted genera.lized inverse
Gt = (cQ;\)yYH (P B)Y =@ e (cQ~'Cc*)"(B*PB) " *B* P}
in view of Bt B = I = CC*, we then have
Q;'G*P, =Q 'F*(FQ™'F*Y*BC(F*PF)*F*P.
§2. Main Results

Let Ac C™**, B IC"”“.P, g, u are positive definite matrices of order m, s, ¢, respec-

tively, and
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Theorem 1. If M = {A B), then the weighted inverse
A% — ((I - AXA)g U+ A*B)f ] "

Mg, =
PQ [ f

where, A* = AX d*d=u—1*q",J = (I - AA*)B,p=P and
) daM(PJdTYRESR, T #£0,
(d*d + (B - Ag~H)* A*tqA®(B — Ag 1)) 1(gATB - )" A*=f;, J =0,

fi = (J*PJ)"1J*P when J is a full column rank.
Proof. We may write

gg © a ¢
Q=[ v [ SR
*q7! 0 d

where, ¢ = g7 ¢1 is the triangular decomposition of matrix g. Moreover, let L = —¢~1ld~1,G =
PiMQ7, it is easy to see that

By the lemma,
~ G=(PiAg;" P(AL+ Bd7Y))=(C D).
now we computate 8; = [(I — CCF)D|* to find G, where,
| Ct = g A*p{t, D = Py,(B ~ Ag~'l)d~1.
Because of
Bt = (I- CC*)D = P,(I — AA*)(B— Ag~'l)d™! = P\{I - AA*)Bd™' = P Jd™",

so that B; = [(J — CC*)D|* = df, P!, from this, f* = 0 or not, according as J = 0 or
not. Kspecially, |
8, = (P, Jd~')* = d(J* PJ)" 1 J*P; (2)

when J 18 a full column rank.
In addition, we may obtain

B2 =(I+D'C*rctp)iD*Cc*rCct =df, P (3)
Notice that the lemma and the main results in [5], it follows that
T ¢ =+ L ct-CtD
MI:_-I;:Q — 1 G+P1 — Q1 ﬁ P]_. (4)
0 d! 0 dt g
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where,
, Bt #£0, | d-1p, P,
P B # or f=dlfP = p1 Py
pz2. Bl = d=18: .
Substituting the above expressions in (4}, we thus complete the proof of (1). Of

course, equality (2) holds when B € CT**1,
Let Ac C**™ U € gmxlm=r) 'yie poxin=r) By the method above, it follows that

m—r n—r

ﬁ:

the important result in [3].
Theorem 2. If A*U =0, AV = 0.p, q are the positive definvte malrices of order m, n,

respectively, then

-1
A p iU A;‘Eq V(V*eV)1

V¢ © (U*p~lU)-* U™ 0

Proof. Let p = pip1,¢=qiq1,

I

Agit U
_ M — P1 ‘1’1. P
- Y'q; 0
It is clear that
ai Apilpl U)=0, pidg'(aV)=0,
Using the theorem 4 in [5] and the lemma, it follows that

M;l ” (p1Aqr ')t (Va3)t

T
= g O A:‘q ‘i”(lﬁ"".;ﬂf’]'1 pl‘l 0
0 I (U*p~tU)~ 0" 0 c I
we thus have
-1 -1
A p U _ p;! O . a1 0| _ qu V({V*eV)~?
V*¢ O 0 I 0 I [0 0" 0
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