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1. Introduction

Algebraic perturbation methods were first proposed for the solution of nonsingular
linear systems by R. E. Lynch and T. J. Aird [2]. Since then, the algebraic perturbation
methods for generalised inverses have been discussed by many scholars [3]-[6]. In [4], a
aingular square matrix was perturbed algebraically to obtain a nonsingular matrix, resulting
in the algebraic perturbation method for the Moore-Penrose generalised inverse. In [5], some
results on tlhe relations between nonsingular perturbations and generalized inverses of mx n

matrices were obtained, which generalised the results in [4]. For the Drasin generalized
inverse, the author has derived an algebraic perturbation method in {6].

In this paper, we will discuss the algebraic perturbation method for generalised in-
verses with prescribed range and null space, which generalizes the results in [5] and [8].
We remark that the algebraic perturbation methods for generalised inverses are quite

useful. The applications can be found in [5] and [8]. 3
In this paper, we use the same terms and notations as in [1].

2. Main Results

First, we will give two lemmas.

Lemma 1. Let A€ C**", and let L and K be subspaces of C" of dimension s < r
and n — s respectsvely,. ALK = C™, B and C* € C:f}"_'} are matrices whose columns

form bases for K and L1 respectively. Then

T B
c 0

13 nonsingular, and

T & (2) +
B AL,K P[AlK'J.)J.!LC
C 0
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where T'= A+ BC — AP qepcay1 f, -
Proof. 1t i1s easy to show that

ALG K =C" <> (A*K1) Lo L=C"  (see|[7))

80 that Px ar, Pla+x1)s s, and AEL’ exist,
From L = N(C), it follows that

CAJ([?;]};{ = 0, CPL,[A'K"‘]"‘ — 0 (1)
and
TPEA-rKJ.).L!LC-'- s B = [A + BC g AP{A'K~’-]-L,L)P(A'K-'~)-L,L0+ - B
= BGP(A-KJ.}.L'LO-l- - B (2)
= BCCtY-B=0
and
OB yepeifis L OF = GO = Iy s (3)

Finally, obviously BBt = PR[B] = Py, and BB+PK'AL = Py a1 8o that
TAM}H + BB+PK AL = (4‘1 + BC -~ AP{A#H.L}J. L]A + PH’ AL
— AAE}‘- + Px arL (4)

= Par,x + Px aL = I,.
Since R(AAE':}{] = AL and N(AAE":L{) = K. From (1)-{4), we have

T B . AE‘.'?)K ﬂA*K.:.}J.‘LC*' _ [ In 0
¢ 0 Bt Py 4L = P, 0 Ih-s

which is the required result.
Ay Agg

Az; Az
the submatriz Az also be nonsingular. Then

Lemma 2. Let ] be a partitioned mairiz which 13 nonsingular, and let

el
Al Ap - A, | —Aft, Ay Agy
A1 Az ~Azy A AT, AR + Al An AT A AL

where Au,z = Ay — Alzﬁgglﬂgl.
Theorem 1. Let A€ C**™, L 13 g subspace of C™ of dimension s <r, and K is a
subspace of C™ of dimension m — s. Suppaa: AL K =(C", and B € C:ffm ’) ,O* €

e f"-'] are matrices whose columns form bases for K and LY respectively. If m = n,

let T = A+ BC — AP 4o 1)1 . If m > n, let B = |B,iB;| where By € C7(*"%), and
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C
M=[A+B,C— AP ugsy1 1 By]. fm<n, letC=| ... | where Cy € Co,"*™ and -
. C;
A+ BC, - PK1ALA
N = . Then
Ca
(1) when m = n,T 1s nonsingular, and
AE}f =T — Pasggryr 1 CYBY Py ar;
M,
(2) when m > n, M is nonssngular. Let M~} = | ... | where M, € C}*™; then
M,

A = M, — Pyex1ys 1.C* B (BB} + BaBF ) P

(3) when m < n, N is nonsingular. Let N~ = [Ny : Np| where Ny € C*™; then

APY = Ny — Plpegays 1 (CHCL +CF o)t CF Bt Py ar.

Proof. {1) From Lemma 1, the matrix

T B
C 0
is nonsingular, and
| - 3
T B _ A.{[?,)K P(A'K'L)J',Lc+
C 0| | BtPxar —Ia-, |

By using Lemma 2, we have

[ T B ] - [ AP 4 Plaegiya sCTB  Prar)™t » ] '
c 0|

% * @&

so that
T = (A% + Pasxs)s,.CYB* Px az)?

which 18 nonsingular, and therefore

AP = T™' — Paug1)s,,CtB* Py as.

(2) Let A =|A : 0]C™*™ where 0 € C™X(m=n),

g% & e
0 Im—n

L= N(C).
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M

Hence
I}={(:) zELmdDEG’“'“},
fe = {(2); seantmavecms),
A-L=ALand A- L@ K=0C™.
Since o
_ L.—CtC 0 _ Pr 0O
B 0 of | o o}’
Similarly,
PA'KJ" 0
P, —
A*K= 0 0]
so that

'P(jtff.l.).l. = Iy — Pj-xl — [
By using Lemma 1 of [5],

Pioxiyri = Plaexsys (Paegsys + )™

—1
. P(A-K.l}.l. 0 P{ArE.L}.L 0 + PL, 0
I R ¢ I, 0 A 0 0

- [ Pa-xxyt(Pasxsyr + PL)™0 0 ]

0 Im-n

s P{A*K-’-]-‘-,L. 0 '
0 Ton |

Thus
A+BC — AP jug1yi g = [A+ BiC— AP pax1)s:B2| = M.

By using Theorem 1 (1), we have that M is nonsingular, and
AP, =M™ — Pgys ;0B Prar.
From a theorem in [1] (p. 210, Theorem 6), it follows that

Bi*-(Bl-Bi*' + BQB;_)_E-

Bt =[B:B,T =
Bi:Bal” = | p+ (gt 4+ BB

so that
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Im-n

i@ _ My | | Pasksyry 0
M, 0

K[c+ 0 ]_[Bf(313f+323;)+

.P
0 In-n B;(Blﬂi*+BgB;)+] e

M, - P(A-KJ.].L'LC"'B?(BLB? + BﬁB;)*'PKdL
M, — B} (ByB} + B3B})* P ar |

Lem“’ —[ ]whmec“m;ndvecfm n)xm Smce[ ]IA o][ ]

[ ] so that XAX = X, so N(X) = N(AX) = N({4 : o} x ) = N(A- AD)) =

X
Y

X = Al ,!K'! ie. Afr..]x = M) ~ P gex1)1,.C* B} (B1BY + B3 B ) Py, AL-

NP ) =K. From L = R(AD) ) = {[ ] z:zE cm}, we have R(X) = L. Hence

(3) Cnnsider A*® € CP*™. It is observed that (see [7])
A L& K=C" <> A" KtoL't=C"

From R(B) = K and N(C) = L, it follows that R(C*) = L* and N{B*) = K. By using
Theorem 1 (2), we have that

[A* + C;B* == A*P(AL].L'K.LEC;] —

is nonsingular, and

A = N — Pugyr s B G (01O + G303 )H P gopa.
Notice that (AEL)" = A;ﬁ]! ri- Therefore, N is nonsingular, and
‘[[?]x — N]_ = }J(A-KJ.}J. L(C.‘.Gl + C;Cg)+C+B+PK AL

Under the conditions of Theorem 1, if the dimension of subspace L = r, then
ra.nk(AE‘:}f) =dimension of L = r and so AE?K = E'}?. From [1] (p. 62, Corollary 9),
it follows that

AL® K =C™,dim(L) =r <= Lo N(4) =C", K& R(A)=C™

It i1s easy to show that |
(A*K*)' = N(A) and AL = R(A).
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Therefore
.F'(A-K.L}J.'L — PH(A],.L:

Px.aL = Px r(A))

A - P[A:KJ.)J.‘L = (),
The following is a direct consequence from the discussion above and Theorem 1. |
Carollary 1 [5]. Let A € C™*", B e CmX™") and C € C7*" such that

R(A) ® R(B) = C™ and N(C) ® N(4) = C".

Em=nletT=A+BC. Km>n, let B=[B, : Bj| where By € Cp\"™"),

and M = [A+BiC By Ifn>m, let C = [gl ] where C; € C™>%"  and
2
N = [ A+Hs ] Then
C;

(1) when m = n, T is nonsingular, and

; AgﬂliR(B) =T - PN(A}-N(G](7+B+PR{B),R[A);

(2) when m > =, M is nonsingular. Let M-1= [ g; ] where M; € C**™; then

AG ). r(8) = M1 — Pu(a).n(c)C* BY (B1BY + B3 B)" Pr(b).R(4):;

{3) when m < n, N is nonsingular, and let N-1 =[N,:N;] where N; € C%*™. Then

AEE?).R(B] = N1 — Pn(a).n(c)(CY C1 + CF C3)* CF BY Pr(B).r(4)-

Since the weighted Moore-Penrose generalised inverse Ai"M‘ N) T Aﬂ’ﬂ) R(A®),M~1N(A*)

([1], p.127), especially AT = Ag[‘i).)‘ N(a*) s the algebraic perturbation method for A?'M' N)
and At can be derived from Corollary 1. For details see {5]. |

Corollary 3 [6]. Let A € C%", k = index(A), s = rank(4*), and B,C* € Cpx{"™*)
be matrices whose columns form bases for N(A*) and R(A*}* respectively. Let T = A +
BC — AB(CB)~1C. Then T is nonsingular, and AP =T-1 - B(CB)~%C.

Proof. 1t is observed that

2 _ 4(2)
AD = A(R{)A"LN(A*') N AE\T(G},R(B)

and

A-N(C) @ R(B) = C"( from R(A*) @ N(A¥) =C™).
Finally, notice that
(A*R(B)J')'L - (AtN(Ak].I.)_L - (R(A:lt)k-l'l)l
= (R = (N4
= N(A%) = R(B)
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and

AN(C) = AR(A*) = R(4*) = N(C)

together with ([6]) '
Pr(p).n(c) = B(CB)~'C.

So T is nonsingular, and A? = T~ — B(CB)~2C from Theorem 1.
I would like to express my thanks to professor Wang Guo-rong for introducing me to
this field and for his useful remarks.
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