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Abstract

The solution of certain Toeplits linear systems is considered in this paper. This
kind of systems are encountered when we solve certain partial differential equations by
finite difference techniques and approximate functions using higher order splines. The
methods presented here are more efficient than the Cholesky decomposition method and
are based on the circulant factorisation of the symmetric “banded clrcnlant" matrix,
the Woodbury formula and the algebraic perturbation method.

1. Introduction

We consider a linear system of thie form
Az = f, (1.1)

where the coefficient matrix is an nth order symmetric banded matrix of Toeplits form

g a1 . oua ap
3 |
s
Ay = 5 (1'2)
Cp
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or the symmetric “banded circulant® form

ao ﬂl . a o ﬂp ap - 8w ul

]

> &p

Qp

A¢= y (1.3)
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= (£1,%2, " ", %n)T is the unknown n-vector, and f is the given right-hand side.

This class of linear systems occurs in solving a certain kind of boundary value problems
by finite difference techniqueﬁ, in solving biharmonic equations by the Fourier method, and
in higher order upfine approximation (2, 3, 4, 5, 6, 11].

System (1.1) with coefficient matrix of form {1.2) can be solved by band Cholesky
decomposition [7] or by Toeplitz factorisation [6]. Although the operation counts of the
two methods are about the same, the latter requires less storage. If the system has a
coefficient, matrix of form (1.3}, then the Cholesky decomposition is expensive, and the
circulant factorisation presented here is more favorable in terms of not anly arithmetic
operations but also storage requirements. The methods presented in this paper are based
on the fact that under certain conditions the matrix in (1.3) can be factored into two simpler
circulant matrices, and the corresponding circulant system may then be solved by using the
Woodbury formula [8]. Furthermore, the banded Toeplits matrix may be treated as a
perturbation of a circulant matrix, and Toeplits systems can be solved by the combination
of the circulant factorisation and algebraic perturbation method [9].

In §2, we will describe the method for factoring a symmetric banded circulant matrix
into two circulant matrices. This factorisation was used to solve the band circulant system
in {3]. The methods for solving band Toeplitz systems will be studied in §3, and finally,

some numerical results will be given 1n §4.

2. Factorization of Banded Circulant Matrices

To factor the banded circulant matrix given by (1.3) we consider the real function
with the elements of the matrix as its coefficients

B(2) =aps® + -t ayz+apg+az” + - +ayz”P, (2.1)

the characteristic function of matrix A4,. Assume, without loss of generality, that a, = 1.

We have that following theorem.
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Theorem 2.1. If matriz Ap s strictly diagonally dominant, .e. |ag] > 2(|as| +
.o+ + |ag|), then there exists a real polynomial I(z) = Po+ Brz+ -+ Fp2?, |Bo| > Bpl|, with
all roots outside the unst circle such that the characteristic function ®(z) can be factored as

®(z) = I(2) - U(z71). (2.2)

Proof. We show first that the function ®(z) has no root on the unit circle. If there

exists a number 2o on the unit circle which is a root of the equation
®(z) =0, (2.3)
then zo = ¢'? for some real #,0 < 8 < 2x. Substituting 2o into {2.3) we have

ao =—[oy(e? +e )+ -+ a, (e + e~ P9)]

= —2[ajcosf + - -+ a, cos pb).

It follows that
jevo} < 2(Jea| + -« + [ap]),
which is a contradiction to the assumption of the theorem.

We now note that
®(2) = ‘I'(z_l):
and (2.3) is a reciprocal equation [1]. Thus if z; is a root of (2.3), then g0 is z5 1. It follows

that ®(z) has p pairs of roots zik], zéh}, such that

z{k)=1f3£k}, k=1:21“':pl

and z;{lk] are outside the unit circle.

Let .
I(2) = J] (z— =) (2.4)

We now prove that [(z) is a real polynomial. If all the roots zik’ are real, then I(z) is real;

if some of zih}’a are complex, then their conjugate complex numbers, which are outside the
anit circle too, are the roots of (2.3) since the coeflicients of the equation are real. So it is
obvious that {(z) is a real polynomial and satisfies (2.2}, and the proof is completed.

It is easy to verify that the corresponding circulant matrix A, can be factored as

Ac = LIT, (2.5)

where

B By e By

By By
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| To compute the factor I(z), we solve equation {2.3). When p = 2, it is well known |1,
5] that the roots of equation (2.3} are given by

1
P1 (fh + {n{ — 4]1ﬁ

n— (’ﬁ = 4]1/2 3
(2.6)

=~
(rrz + (ng — 4)*/2},
=i

h:ln-t Hll—i Hll—i

nz — (n3 — 4)*/2

-where

(2.7)

Having computed the roots we choose two roots the absolute values of which are greater
(1) (3)

than 1, say z; ' and z,"’, and form the coefficients of the factor {(z) via
-

By = —(2M) 4 2{?), (2.8)

When p is greater then 2, it is natural to solve {2.3) by using some numerical method
and then use the relation between the roots and coefficients to calculate the factor I{z), but
it is preferable to compute {{z) directly. Since (2.2) is equivalent to

p—%
Eﬂfﬁf-l-i = Qy, 1=01,---,p [2'9)
=0

we can solve (2.9), which is a system of nonlinear equations, for 8s. If we denote

p—i
f‘l(b) = Zﬂ.‘fﬁi‘l‘i — Oy, t = n: 1: L '.: P

y=0

then (2.9) can be written as
f(b) =0, (240}

where f(b) = (fo(b), f1(d), -, fo(8))T,b = (Bo,B1,---,Bp)T, and the application of the
Newton-Raphson method to system (2.10) gives

p(m+1) = plm) _ (™) =1 7 (b)), (2.11)

or

T(b(ml)b(mﬂ) = TNt — (6™ = Ty (B(™))b(™) — g,
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. re[8]-n+n
—_— B B v B
I = ﬁ.l | , Tz = ) : '
2 _ a

and a = {ag, @y, +, xp)T.
It has been shown [10]| that with the starting values

B = (oo +2) ) A =0, =12,
i=1

the iteration (2.12) is always convergent.

3. Band Toeplitzs Systems

>

The band Cholesky decomposition iz an efficient method for solving general band
symmetric systems [7], and it can of course be used to solve the symmetric band Toeplits

system
AtI — f.. (3.1)

But the appiication of this method to Toeplits systems not only costs a lot of arithmetic
operations but also requires a great amount of storage since it does not take the advantage
of the structure of the Toeplits matrix. Fischer et al. 6] proposed the Toeplits factorisation
method for the solution of band Toeplits systems, which has some advantages in terms of
arithmetic operations and storage requirements. In this section we will use the circulant
method given in [3] to develop an alternative to the Toeplits factorization for solving band
Toeplits system (3.1), and use the name BCS to refer to the algorithm Banded Circulant
Solver (see [3] for details). |

Algorithm BCS can be modified to compute the inverse of a banded circulant matrix.
Since A, is a symmel;ric circulant matrix, its inverse A~! is also a symmetric circulant,
which is uniquely defined by its first column, that is the solution of the equation

A.u=(1,0,---,0)7. (3.2)

The algorithm BCS may directly be employed to solve equation (3.2). But in this case the
first two steps of the algorithm are essentially the same, so the algorithm for inverting a
banded circulant matrix requires O{4pn) operations. f

The banded Toeplits matrix 4; may be considered to be a (2p)-rank perturbation of
.the banded circulant matrix A, 1.e.

il (‘2’) U(oT1L,) — (z) UT (Ip07), O 83)
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where

Substituting (3.3) into (3.1) we have

o = (ﬁ') U7 I,)z — ( ; ) (b Y= . (3.4)

If matrix A; is strictly diagonally dominant, then so is the corresponding circulant
matrix A,, and therefore A, is nonsingular, and from (3.4) we have

x— Al (‘2’) U(Tr)z - A? ( IO ) UTHL0T)z = AJ1S. (3.5)
p .
Let z(1) = (21, . 2p)7, g3 = (Zp+1s- -, 3n—p)T:3(3} = (Zn-p+1,°**,Zn)7, and

¢
5= 4(5)

- ' . D
_ 4-1
Tamds (I)

which are the n-by-p submatrices consisting of the first and the last p columns of matrix
A1, respectively. Then equation (3.5) becomes

z=y+ B U® + BUT 1), (3.6)

which shows that the solution to equation (3.1) is the linear combination of the solution of

the corresponding circulant system
Ay=17 (3'7)

and the first p and the last p colums of the inverse of the corregspanding circulant matrix.

The solution to {3.7} can be obtained by algorithm BCS in O(5pn} operations, and
the inverse of A, can be calculated in O(4pn) operations. The inverse A ! is, as we pointed
out above, symmetric circulant and defined by its first column, the elements of which are
denoted by u;,uq,- .-, u, satisfying

Up—i = Ui42, t=0,1,---,|{n - 1)/2],

where |z] is the integer floor function of 2. We then have

By Ug o e Ay
Uz
A;l.: E G, Ry &y - ;
Uz
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-_____-__.___—--——_—'__-'-—-"—___

and therefore

1
s up
I
uj
-B&'- H ﬁiﬂ)
Un—p+1
By "t 't Upeptl
and "
Up—p4+1 0 777 Un
»
Up—-p+1
i ;
: I
up i gL u1 J

To compute the first p and the last p components of the unknown vector z, we
premultiply equation (3.6) by (I,07) and (07 Ip), respectively, resulting in the following

linear system
(I, — Ml,,UT):r“) s MHU:::(E} — y{1},
(3.10)

"'."M]_]_UT::{I} + (Ip o M]?;JU)I{S'] — y(a}l

where M;; and M;, are pth order submatrices of A7 at the left upper and right upper

corner, respectively, 1.e.

ul - » P up un—p+1 R - ¥ o= oa uﬂ
AJUL=: ) ) ' ﬁ{h;== ) i 5
up ¥ omow s w u]. un_zp+2 - 4 n m u'l—p"'l

and ym,ym are p-vectors with the first and the last p components of vector y as their

elements, respectively.

Forming the coefficients of equation (3.10) will cost O(2p?) operations and (3.10) can
be solved by Gaussian elimination with O(8p®} operations. Having calculated y, u, £(1} and
2(3), the subvector 2(3) can be obtained via (3.6) with O(2pn) operations. performing the
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iteration (2.12) once would cost O(p®) operations, and there are usually a few iterations
needed for convergence. So the amount of work to compute the factor [(z} would be O(p?),
the same order of solving equation (3.10), and hence the total amount of work to solve
symmetric band Toeplitz systems by using the algorithm is O(11pn) + O{p®). Comparing
with the band Cholesky method, which requires O(np® + 3np) — O(p®) operations, when
8 < p << n, the algorithm is more favorable than Cholesky factorization. In this case,
the asymptotic operation count of the algorithm would be O(1ipn). The algorithm thus
proceeds as folows.

Algorithm BTS (Band Toeplitz Solver) solves the symmetric band Toeplitz system
(3.1). Assume that the parameters fo, f;, - -, fp are precomputed.

1. Solve for y equation {3.7) by using algorithm BCS.

2. Compute the first column vector u of AZ? using algorithm BCS.

3. Form and solve equation (3.10) for z(1) and z(3).

4. Compute vector z!2) via (3.6), which along with z{1) and z(®) is the solution.
endalgorithm.

2 4. Numerical Experiments

L

The algorithms described in this paper were tried on the APVAX of the Department of
Computer Science, Yale University, and compared with Toeplitz factorization and Cholesky
decomposition. The program was written in FORTRAN.

To obtain some insight into the accuracy of the algorithms, we generated a number of
vectors randomly, which were considered to be the “exact” solutions, and multiplied them
by the coefficient matrices to generate the corresponding right hand sides. The equations
were solved by using the algorithms BTS and BCS as well as the Toeplitz factorization and
the Cholesky method. In all the experiments the results differ from the “exact” solutions
only in the last digit, indicating that the algorithms presented in this paper and [3] are
stable. ’“

In our all tests we let p = 2 and choose several matrices satisfying the assumption
in Theorem 2.1. The execution time of algorithm BTS and of the Toeplitz factorization
are almost the same. In solving circulant systems the algorithm BCS is about twenty times
faster than the Cholesky method in our tests, and saves a lot of storages.
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F. Chan and Professor Martin H. Schultz for making such a pleasant stay at the department.

References

[1] W. 8. Burnside, The Theory of Equations, Dover Publications, Inc., New York, 1960.

[2] Chen Ming-kui, Modified doublesweep method for solving special tridiagonal systems of linear
equations, Journal of Xi‘an Jigotong University, 16 : 5 (1982), 85-04.



342 Journal of Cnmputatianal Mathematics Vol. 7

£

[3] Chen Ming-kui, On the solution of circulant linear systems, SIAM J. Numer. Anal.,, 24 (1987),
668-683.

[4] D. J. Evans, On the solution of certain Toeplitz tridiagonal linear systems, SIAM J. Numer.
Anal., 17 (1980), 675-680.

[6] H. B. Fine, College Algebra, Dover Publications, Inc., New York 1961.

[6] D. Fischer, G. Golub, O. Hald, C. Leiva , O. Widlund, On Fourier-Toeplitz methods for sepa-
rable elliptic problems, Math. Comp., 28 (1974), 349-368,

[7] G. H. Golub, C. F. Van Loan, Matrix Computation, The Johns Hopkins University Press, Bal-
timore. Marylard, 1983.

[8] A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.

[9} L. B. Rall, Perturbation methods for the solution of linear problems, M. Z. Nashed ed., Func-
tional Analysis Methods in Numerical Analysie, Springer, 1979.

[10] G. Wilson, Factorisation of the covariance generating function of a pure moving average pro-
cess, SIAM J, Numer. Anal., 6 {1969}, 1-7.

[11] W. L. Wood, Periodicity eflects on the iterative solution of elliptic difference equations, SIAM
J, Numer. Anal., 8 (1971), 439-464. -



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg

