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§1. Introduction

This paper is concerned with the minimality of the support for bivariate splines, which
was first investigated by de Boor and Héllig in [1]. Now let us introduce the problem briefly.
Let x; 5 be.the space of bivariate pp {piecewise polynomial) functions in C”, of degree
< k, on the mesh A obtained from a uniformly unit square mesh by drawing all upward

sloping diagonals. It is well-known that whenever p > [2k T 2],, there is no element in space
wﬁi A With compact support and this kind of spaces has bad approximating properties. So

we always suppose p < [Zk{ 2], In this case there exist compact support elements in space

'Jl";:‘ a+ Naturally, the problem of searching for the minimal support elements in this kind

of spaces is raised. The very useful cases are p = [2k T 2]. For different values of k mod
3, we obtain three different kinds of spaces r: A+ They will be denoted respectively by
8, = wgﬁ'g A5l = gj:‘,f A and Sz, = -n'g: fﬁ, where u iz a positive integer.

In order to Investigate S, , and S; ,, de Boor and Hollig introduced the following
concepts.

A function f is said to have minimal support in space S if f € § and theonly g€ §
having support strictly inside supp f is ¢ = 0. And a function f is said to have unique
minimal support in S if f € § and any g € S having support in supp f is a multiple of f
(see[1]).

They determined all minimal support elements in Sy , and 5, ;. But when searching
for minimal support elements in Sz ,, de Boor and Hollig noticed that if stuck to the defimi-
tion of minimal support elements given earlier, one could not find a basis for S; ,, consisting
only of minimal support elements. As an example, they showed that the translates of four
functions, whose supports are drawn in Figure 1, provide a suitable basis for S ;, but the
notable fact is that the fourth element does not have minimal support. Without any def-
inition or further illustration they still called them four “minimal support” elements and

asserted at the end of their paper that for odd i, the four “minimal support” elements in
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S ., can be obtained from the preceding case by convolution with M 1.1,1 (for the definition
of M1 11 refer to [1])

Since their “minimal support” in 53, has an uncertain meaning, we cannot draw
any clear conclusions from their discussion. We have to redefine the concept of minimal

support for this case in order that we might discuss the problem precisely. That 15 what
we want to do in this paper, which is arranged as follows: In Section 2, we calculate the

dimension of the subspace of S5 ,,, consisting of all the elements having their supports in a
certain closed convex domain. In Section 3, the minimal support system 1 S3 ,, 18 defined

and such a system in S; 3 is given as well. We also show that the system consisting of the
four “minimal support” elements in S5 3, which were obtained and termed by de Boor and

Hollig, 18 not a minimal support system.

§2. A local dimension theorem

Let E = (&;)7 be a sequence in R°. The truncated power (or cone spline) Cg(z) is

defined as the following distribution on R°
. ) .
o= [ $(ut)e)a

where ¢(z) is any test function on R* and R} {z € R*;z(z) > 0,1 = 1, s}.
And the box spline Mg(z) is defined as follows:

seMele)iz= [ (3 ti)e)a 4 op(R),

RS Iﬂ,l]"" 1i=1
It is well-known that (see[2]) for W C E
DwCg = Ca\w.

In this paper, we only consider the case of R? and E will be taken as E = (d; : r,d2 :
8,ds : t), where d; = ¢; = (1,0},dz = e = (0,1) and d3 = ¢; + e3 = (1,1). For simplicity,
we shall write C, , :, M, ,: instead of Cr, Mg respectively.

Lemma 2.13. Let k=r+ s+t —2; then

(2) = { p(z), zeVi={zz€R},z(1) - =(2) <0}
v 9(z), z€Va={zz€Ry,z(1) - 2(2) >0},

g el

where
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By the way, we point out that formula (2.1} in (1], i.e. Cs(z) = Z Mz(z — v), is
vEZ?
false, since for large enough z(z),7 = 1, 2, E Mz (z — v) = t while C=(z) cannot be equal
veZ?
to a constant on any open set in Ri.
Now let s(< k,r) denote the space of all pp functions, of degree < k, with supports

in R2, the possible singularities of which only appear on the three rays

—rebeiinld-—

R-I-—d'l" = {tldi;tl > 0}1 r = 1,3,

where v is such a triple index that all partial derivatives of order < (i) are required to be
continuous across R d;, 1 =1, 3.
Lemma 2.2.!!

dims(< k,v) = 3 (S0 - vli))+ — 1- 1),

<k §=1

Let Qu {u(l) v(1} + 1} x [v(2),v(2) + 1}, v € Z2. Let 1 = conv {0, 7d;, 7d; +ds, d2},

ie., 1= U Q(n.0) \ @ with § the triangle conv {jd;, jd; +d3, (7 +1)d1}. Let X = {f|a; f €
n—=0

Sz,uy 8upp f C {z(2) = 1} UQ}. For convenience, we let Co = Cput1,u,u,C1 = Cupintt,
Cﬂ = Cﬂ_11“+1:ﬁ+11 'ﬂ'nd 03 = CF‘IH‘!“"

Theorem 2.1.

and any f € X can be written as

F B
F=) ) auCi( — (v,0)) (2.1)

v=035=0

tf and only if (ay; _.03‘__,3 satisfy.

Z[“vﬂ( - ”)“ + paya( — ”)'u_ :

> an( - v}“';l =10; (2.2)
Z ay2(- —v)* % =

v=10

Proof. Since k =3u — 1,p = 2 — 2, we conclude from Lemma 2.2 that
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.
dim 5(5 k, (P, £y P)] = 4.

Hence (< k(p, p, p)) is spanned by the four independent cone splines Cy, C1,C2,C3

and
X ={f € span (Gi{- - (&,0))lnFi=o.; flo = 0},
Thus for any f € X, we have

‘f = Z zﬂvici('. — {v,0}) and f'a = 0.

v=01+=0
Firstly, we shall show that flp = 0 implies (2.2). For this sake, let
y 3

| Z ZGH;C;(: —{v, 0)) =0, z€4. (2.3)

v=0 =0

Using Lemma 2.1, we have

E[ (p_ )E( 1)""(-82‘(‘ P ))(::(1) v)z(2)3#2¢

2p—1 -1\ f3u—1)
+““$3:’i11 Sty (" )(p‘ )(xm—-u)"z(z)”*l-*

im0 (u; 1)'_

— 2\ f3u—1
() (s(1) - o)’ x(2)

+“"’$3p - 1) g{_l]rg_i“ (2;; m 2)

s 1\ /3u—2
+a,;—§3‘; — ;))r 3 (- (P (22§ :)‘ ) (z(1) — v)*z(2)** % =0, ze€d.

(2.4)

Divide (2.4) by z(2)?#~11%,{ = 0,2, and let z(2) tend to sero.. Then we obtain
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Wik s 3u— 1 2y — 2 3u—2
Z“ Ea.u 1])! Ez;: % (#(1) = v)* + aus Esi: ;))' | E*:u:l% (z(1) - o)* " =0;
2 p—1

| 2 — 1 g\ /3u—1 25— 1\ (34
| i O¢ (#_1)'(#—1)(“_1)(::(1)— u—1 1-( . )(

e (3p — 1) (2;4 — 1)

p—1
x (z(1) — v)*~*
20— 1 p—1\ f3u—2
-a a%ﬁ:llz 'L‘_ipggjz)(‘(l]- e
p—2

T iy I A0 [ oy B (:‘::) (‘T:‘::)

La "0 Bu— 1)1 (2;;- 1)

-

- - x(a(1) - ) w3

2 — 2 3u—1 g 1
# CAB—2 5—32
to2 5 ) 72— 2 (#(1) = v)*™% + aus 3 2 z
| il

x(z{1) — u) '3—0 z€H

(2.5)
It is easy to verify that they are equivalent to (2 2).
Secondly, we shall show that (2.1) together with (2.2) implies
feX.
From (2.2), we have
I o _ _ .
5’ [u,n (2(1) - v)* +iags(=(1) - )| =0, =05,
v=0
:‘ .
Z ae1(z(1) —v)' =0, i=o,p—1, | (2.6)
v=0 .

.f :
Y aua(x(l) —v) =0, §=0,z-2.
v=0

On the other hand, whenever z € 8, (2.1) becomes

B S a3 and
f(fr)—g(—rl) (#_‘.)mm_l_imﬂ_l)!ﬂ;[am(zu)—u) +iays((1) - v)*Y]
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2p—1
3u-1 p—1—¢ 2u — 1 — 1)1z(2)3+ 1
%’iﬁ == 12 z(2) Z Gyo + Z( 1) (.U(—Fl = 1)11123JJ T

=0

&4 (25— 2 — i)a(2)P* 1 &

" Z“”(I(l) Bl (8 —2—8)6(8u — 1 —2)lul - Z owa(a(1) ~ 0]’

v=0 t=0
(2.7)

By (2.8), we conclude that for any z € 6, f(z) =0, ie., f€X.
To calculate the dimension of X, we consider the following matrix

1 1 1 e 9
1 2 23 ... 93n-1
1 n n2 coh p2n—l
A":..- :
. 2-1 3-1 4-1% .. (21r1‘+1)-1"""1
2:1 3-2 422 (2“+1)22n-—1
21 3-n 4*!’12 [2ﬂ+1],nﬂn—l
Now let ,
1 1 1 O |
1 2 92 ... 92n-1
1 4 “2 iy nﬂﬂ—l
A =
0 1 2 - 2n_1
0 1 2-2 - (25_. 1)221:-‘2
0 1 dig o '(gﬂ_,l)‘ﬂzn—:a

It is easy to see that det(A,) = n!-det(A;). Thus A, is nonsingular, for A7 is only a
Hermite interpolation matrix and certainly nonsingular. This shows

dmX=(+1-p)+ +{7+2-p)++ (27 +1-p)+.

Similarly we have
Theorem 2.2. Let (¥ = conv {0,jds, jdz + da,dy}, and let X! = {f|a; [ € S2,4,
supp f C {z{1) > 1} UV}, Then |

dimX' = (j+1-p)+ +(F+2-p)+ + (25 +1-p)+.
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Furthermore, any f € X' can be written as

'ﬁ (uﬂ]u—ﬂ =0 ’ﬂmfy

;
D7 aua(- — o) + paus(- = v}t =0;

v={

J.
Y " (av0 + 8v1 — 8o3)(- — v)* 1 =05

=10

Z(ﬂul —ag)(- — v} =

v=0
'F

Now let C1(z) = Ci(2(2), z(2) — (1)), C?(z) = Ci(=(1) — z(2),z(1)),s =0,3.
Theorem 2.3. Let {1; = conv {U 9da, 7d3 + dz, dl}: and X; = {flﬂpf & Sﬂ,ﬂ:
supp- f C {z(2) > z(1) + 1} Uﬂ;} Then - - '

dimX; =(F+1—-p)y +(7+2—p)+ + (27 +1— p);.

| s
Furthermore, any f = 3 3 awiGM- = (4,v) € X iff (ani)io3=o satisfy

v=0 3=0

Y (0w + g = 9% + pags (- = 0}t = 0
p=0

Z(ﬂnﬂ — ay2){: -—- v)* 1 =0

u'-'—-D

- Z ﬂ.,u[ — 11:*)""'*"2 =0

v=0

Theorem 2.4. Let 3 = conv {0,ds, jds + di, —dg} and X3 = {flas; f € San,
supp f C {z(1) 2 z(2) + 1}Uulz2}. Then

dimXag=(7+1—-p)s + (7 +2—-p)s + (27 +1- n)s.
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7 3
And any £=3" 3 asiC?(- — (v,v)) € X3 iff (aui)i=0i=0 satisfy

w=013=0

Z(avl -+ ﬂug)(- = u)'" + Fﬂ'ua(' e u)pl—l = 0

=0
5
Z(ﬂuﬂ + aya)(- —v)* " =0;
=0 _
7
E agu[* - ‘-l‘..l')“!""_l'n = 0.
v=H)

§3. The system of minimal supports in 53,

Let § =TI} 4. F;:-r a set 1 C R?, S(02) denotes the subspace of § which consists of
functions having supports in {l.

As we know, in Sz, the elements with minimal supports, which are defined by de
Boor and Héllig in [1], fail to form a basis for S2 4(73). So we have to introduce a more
general definition about “minimal support® in S (here p < [2k3? 2]}

Definitipn 8.1. A finite collection {f;}T* of functions sn S, whose supporis are
convez, 18 called a minimal basic system sff |

(a) For arbitrary finite subsets V; C Z2,i =1, m,

YD e fil—v) = 0

i=1 vEV;

implies
gy =0t =1mvEV.

(b) For each function ¢ € S having compact support, there exsst subsets Vi(c Z2) and
real numbers a; 4,3 = i,m; veYV,, such that

¢ = i > aiv fil- — ).

 i=1 ¢EY;
Furthermore, if supp ¢ 1s convez,

g

LJ U supp fi( —v) C supp ¢
i=1vEV;
a¢.v #0

We shall see that the number m is completely determined by S.
For simplicity, for a vector y € R? and a subset 3 C R? we write (-+y = {z-+y; z € (1}.
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Deflnition 8.2. Twe compaci domains N and O are said to be transiatively coinci-
dental iff there exists a vector v € Z? such that

=0+ v.

It is evident that the definition gives an equivalence relation on the compact domains
in R,

Definition 8.3. Two minimal basic system {f;}T and {g:}™ in S are said to be
cotncidental with respect to support iff there ezists a rearrangement « of (1,2, --, m) such
that supp g,(;j and supp fi,t = 1, m, s translatively cosncidental.

Also, the coincidental relation with respect to support is an equaivalence relation on
the minimal basic system in S. |

Definition 3.4. The support collection { supp f;}7* of a minimal basic system in S
3s called a system of minimal support in S.

By Definition 3.1 and |1}, we are aware that the only one minimal support element
(box spline) in $; ,, is a minimal basic system in S, ,, and the two minimal support splines
in Sg,, form a minimal basic system in Sy . ;

Theorem 3.1. The number of functions 1n a minimal basic system is completely
determsned by S. And the minimal basic system in S s unique in the sense of the equivalence
relation,

Proof. Assume that there exist two minimal basic systems in S, {f;}™ and {a:}7 .
Define

Fr. ={fi;1 <+ < m,mes (supp f;) = m(k, f) = min {mes( supp f;},},

1<is<m

1€ 3

Ip=¢,Ixy ={2; f; € Fi},k =1, ny;
Gr = {g5;1 £ 7 < m', mes ( supp g;) = m(k.g)
= min { mes ( supp ¢)}, },

1<i<m’
iE"'k—l

Jo = ¢: Jp = {J:gj € Fk}ak - llng'

For any function f, let Fy(f){Gx(f)) be the set of all functions in Fk{C’k} which are
translatively coincidental with f. For any v € Z2, Fi(-— v) = {fi(-—v); f; € Fy}, k=1, ng.
Then

{fn'“:fm} = Ej Fi, Fi N Fi = ¢; {9‘1:“':9";'} = fj G, Gk NGy = ¢,
k=1

k=1

for k # k'. We shall show that n; = n, and there exists a 1-1 map 7T from F} onto G such
that Supp T(f) and supp f are translatively coincidental for all f € F,, k =1, ny.

When k = 1, by (b).of Definition 3.1 we know

m(1, f) = m(1,¢).
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For any f € Fi, let Fi(f) = {fi}1", Gi(f) = {g_.,,}l . By (b) of Definition 3.1 we are aware
that any fu-nctmn f € Fi(f) must be a linear combination of functions in G;(f), i.e., there
exist {u_,-}ll ¢ R such that

1
-

fii: = algj't('_uf)!kz 1,?‘1,1'.?;632,
i=1

1}

From (a) of Definition 3.1 we conclude

r, <r;
By symmetry we have

ri <1
Thus

This means that for afty f € F| (or G}),

IFy ()| = |G1()).

1t follows that there exists a 1 — 1 map 7} from F) onto G such that T,(f) and f are
translatively coincidental with respect to support for all f € F;.

Inductively assume that for all k' < k — 1 there exists a 1 — 1 map T from Fj+ onto
Gy such that Ty (f) and f are translatively coincidental with respect to support for all
f € Fy.. Consequently, m{k', f}) = m{k', g). Then for the case k, for any f e Fy let

Filf )'{ =17 Gk(f)={9’; 1)
Again by (b) of Definition 3.1 we have m(k, f] = m{k g) and any f € Fi(f) must be

a linear combination of functions in Gk(f)U ( U U Fi(- — u)) ., there exist real
i=1veV/

numbers {ba},-., and vak € Z% X = 1,r; such that

rkl

= Z blg;:_; [ = ﬂ)«-.!t‘—} + .ﬂ'z = 1, ri,
A=1

k4
where f; € span { U U F.( - u]},VI' is a subset of Z2,1 = 1, rg. Similarly, we know
[=1 uEVl’
from (a) of Definition 3.1 that

By symmetry, we have
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Thus

This means that for any f € Fi (or Gi ),

[Fe(F}] = |Ge(£)].

This shows that there exists a 1 — 1 map T from Fi onto Gy such that Ty (f) and f are
translatively coincidental with respect to support for all f € Fj.

Finally we show that ny = n,. If, on the contrary, without loss of generality we
suppose ny < ng, then all g; € G,, , by Definition 3.1, must be a linear combination of
functions in | J;2, |J,cv. Fi(-—v}, where V; is a finite subset of Z%,1 = 1,ns. But any function
in 7, Upev, Fi( — v) must be a linear cembination of functions in |J;7, U,y Gi(: — v),
where V! is a finite subset of Z2,{ = T;L? Thus g, would be a linear cnmi:inatinn of
functions in  J7/4 vev: G;{- — v}). This contradicts {(a} of Definition 3.1. So n; = n, and

consequently m = m',

Define

T(f) = Tu(f), for f € Fylk=1,ny).

Then T is such a 1 — 1 map from {f1, -, fm} onto {g1, -, gm} that T{f) and [ are
translatively coincidental with respect to support for all f € {f1,---, fru}. This means
~that there exists a rearrangement 7 of (1,2, -, m} such that gr(;) and fi,2 = 1,m are

translatively coincidental with respect to support. This completes the proof.

Corollary 3.1. The system of minimal support 1n 5 18 unique in the sense of the

equivalence relation.
The main result of this section is

Theorem 3.2. In Sz 3 there exist four functions { M3}3 which form a minimal basic
system in Sz . And the collection {supp M:}3, which are tllustrated in Figure 2, s

system of minismal support in 53 3.
To prove Theorem 3.2 we first establish some Jemmas.

Lemma 3.1. Let P3 = conv{0, 2d,,2d; + 3d3,5d3, 3d;3 + 2dy,2d3 }, then

dim 3213 (Pg) = 5

Proof. By Lemma 2.2, any f € S 3(F5) can be written as
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P 3

Zzamc,( —(u,e))+ZZbu,C( — (v+1,1))
2 3 2 3 :
£330 cwCil = (v+2,2) + 3 3 duiCil- — (v+3,3))
1 3 2 8 | |
+Zzeu.0( u+4,4))+zzawa(--(o,u))
2 3 . 2 3 _
+ Z Zb”'C;(' - (Lv+ 1))+ EE::“'C,;[—.— (2,v + 2))
v=1i1=0 =1 i=0

2 B 2
+ Z zdmc‘( T (3,‘” + 3)) e Zc“G;(' S (4,U + 4]).

v=14=0 ? £ =0

Since supp f C P3, by'i;henrems 2.1-2.4 the coefficients {ay;, by, v, d,,.:]i‘:m:g, (ﬂui)fm{m fu,

(a“*, Bt v gerjd "_1 ._o and (e**)7_, must satisfy the following equations

i [u,,u('. ._ o) + ol ~ 2] = 0 .,; [Buof- — ©)° + 3bus(- - 'U)z] s,
;ﬂu( - U]~2 = 0; . %_:1 baf ~0)" = 0;
gﬂu:( ~v) =0, hz_lb“ﬂ("”)f

' b_y,i=a", 1:=0,3.
H:Z;E [euo(- = v)® + 3ewa(- — v)?| = 0 .,;z [duo(- — v)° + 34, ( -~ ] =0
hi_ﬂ cor(- — v)? = 0; uiid”(' Pk
é_:zcﬂe(- —v) =0; | i_:zd“(' —

c.1 =bl", c_gi=a*, 1=0,3, doy;=ct*, d_gi=0%, ¢=0,3,
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(e21 — a22)(-)* + 3az2a()® + (a1 — baz)(- — 1) + 3bas(- — 1)2

+(ca1 — c22)(- — 2)® + 3c23(- — 2)% + (day — da2}(- — 3) + 3dgs(-—3)* =0;

(820 — a22)(-)* + (b20 — b22)(- — 1)® + (e20 — ca2)(- — 2)® + (d20 — d22)(- — 8)% = ;
azo-) + b20(- — 1) + c20(- — 2) + d2o(- — 3) = 0,

(811 — 812)(")° + 3a13()? + (b1y — b12)(- — 1)3 + 3by3(- — 1)?

+{cir —e1a)(- — 2)° + 3e1a(- — 2)% + (dy1 — daz)(- — 3)% + 3dy3(- — 3)2
+{e11 — e12) (- — 4)° + 3e13(- — 4)% = 0;

(210 — 812)(")% + (b10 — ba2)(- — 1)% + (c10 — c12)(- — 2)?

+(d10 — dlg)(; ~3)* + (e10 — e12)(- ~4)* = 0;

a10(-) 4 bio(- = 1) + c10(- — 2) + dio(- — 3) + ex0(- — 4) =0,
2 - 2
z.u“z(- — v}’ + 3a"?(- — v)? = 0; E 5% (. - v)® + 36" (. — v)? = 0;
v=0 : u=—.1
r >, .
E(auﬂ + ﬂtrl _ ﬂt.tﬂ](_ _ ‘U)2 = 0; z (buﬂ + b"l . bu?)(_ _ '-IJ)2 = 0;
=0 ' | | . v=-1
2 | 2
E(a“l —a"?){- — v) = 0; Z (67! — b¥2)(. — v) = 0;
v=0 v=—1 )
% =ap;, §=0,3, b= =y, B4 =bos, i=03,
2
z ¢*?(- — v)° + 3" (- — v)? = 0
v=-2 .
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B T T CR AT T

2

Y A% -0 £3d( - 0)? =0

= -2
2
Z (dﬂn-i-dvl _duE)(._ U)E = 0

v=—2

S @ - &)~ v) =0,

v——2
d=%4 = bg‘,‘, d_ﬂl‘i = C1.4» dﬂ*i — du"', 3= ﬁ,_3,
" .
Z e?2(- —u)° + 36”3(- — v)? = 0;
tr==— 2
H ’
Z (Euﬂ+eul “Euzj( —U}ZEO,
p=—"2
1
(E"l . 6”2)( _ U) =
v=—2
e 2t = cg,,ﬂ"l‘i — ,i,EU" = €0,y ¥ :73}

{azl g ﬂzz}(_)a 4 3{123(_)2 4 (521 _ 522](~ - 1)3 3 3523(_ _ 1)2

(e = c22)(- = 2)% + 3¢23(- — 2)% + (%' — d?2)(- — 3)° + 34 (- - 3)* =0;

(uzn i {'122}(']2 3 {bzn _ bzz)(_ . 1)2 ¥ {Cm _ 522)(- - 2)2 ne (dzu _ dez){_ _ 3)2 = 0;
a2V() + b2 (- = 1) + 2 (- - 2) + V(- - 3j = (,

(a'! = a!2)(-)® + 3a'3()% + (b1} - pL2)(- — 1)3 + 3b23( — 1)?
(et~ c2) (- - 2)° 4 3¢*3(- — 2)% + (d - d'2)(- — 3)3 + 3d*>(- — 3)?
+(elt — e?)(- — 4)% +3el3(- — 4)? =0;
(a® - a12)()2 + (b0 ~ B2 — 1) + (10 — 2)(- — 2) -
(1 — d1Z)(c— B)2 4 (10 — e1?)(- — 4] =
a0+ 60— 1)+ 1O -2} + O —-3) + - —4) =0.
After complicated computations, we find out that all equations above constitute 89 inde-

pendent conditions. Thus
diIHSgla(Pg) = 23 x 4 — 89 = 3.

~ Lemma 3.2. Let Ty = conv {0,2d,,2d, + d3,da}U conv {2d2,2d2 + da, d3, 0},
Y, = {f|r,; f € Sz3, supp fC {z(:)>1,e=12}uT}. Then |

dimY; = 2.
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Proof. Since the method is analogous to that employed in the proof of Theorem 2.1,

we only sketch the main points.
Let #; = conv {2d,,3d;,2d; + d3}, 82 = conv {2d;, 3dz, 2d; + ds}. Then

2 3 ;
—— 1 — U’ = 1,2-}1
T m—l,t—D)f 5, L

Vi = {f € span ((Cil~(n,0))|  Jiod=o(Ci(~(0,m))

Thus for any. f € Y; we have

0 1 ¥ 2 3
=323 amCil = (m0) + 3 D bmiCil(- — (0,m).

n=01i=0 m=11:1=0

flo, =0 and fls, = 0 imply

»
2
z anof- — n)° + 3ans(- — n)? = 0;
Zﬂnl(‘—ﬂ)2 = 0; (3.1)
n=0
. & 2
Z ﬂnZ(' o "’) = 0,
2
(@01 — a02)() + O (b — bm2)(- — m) =0;
(ﬂ-ﬂﬂ 4+ &y — {1(12)(*)2 + E (bmg + b1 — bmz)(' —_ m)z =0; {3.2)

m=1

" 2
aoz()® +3ags(")2 + 3 bma(- —m)® +8bms(- —m)? = 0.

=1

Equations (3.1) and (3.2) constitute eighteen independent conditions. Therefore

lelYl =20—18 = 2.

The lemma 1s proven.
The solution to equations (3.1) and {3.2) is useful in the following. For convenience,

we write out the solution as follows:

aGgp = Goz; @1 = 0,a02 = g2, 203 = ap3;

a10 = dagz + 12ag3, 611 = 0,812 = ~2a0z,813 = —4ao2 — Baogs;
azo0 = —5apz — 12a¢3,a21 = 0, a2z = a0z, @23 = —2a02 — 5203, (3.3)
byp = —2aga2, b11 = 6aoz + 12a43, bi2 = 4apg + 12ap03, b33 = —4apz — 8ap3;

bao = agg, by = —6age — 12ap3, bao = —5ay; — 12ag3, b3 = —2ag2 — 5ags.
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Lemma 3.3. Let Pg = Ccony {0, 2&1,2d1 + 2d3,4d3, 2!‘.’!2 + 2d3,2d2}. Then
dll'ﬂ Sgia(Pz) = L.

Proof. From |1] we know that there exists a spline s € S; 2 whose support coincides
with the support of M, ;1. Thus S+ M, ; , € S2 3 and supp (s+ Mi 1,1) = P;. This implies

dim S; 3(Pz) > 1.

On the other hand, from Lemma 3.1 we have
dim Sz,5(F2) < 1

for, if , on the contrary, dim 52 3(f%) > 2, then we would have
dim S, 3(P5) > 4.

This leads to a contradiction. Lemma 3.3 is proven.
Let Ay = conv {0,d;,d3,d2}. A direct calculation shows that there exists a function

Mg’ & Sgig[Pg) such that

M3 o T Call) - 205() — 265().

By lemma 3.1 and (3.3) we can find s° € §25{Ps) such that
Sﬂ,-‘ln = C3().

Let Py = conv {0, 2d,,2d, +2d3,4d3+d2, 2d3+3da, 3dz}, and P? = conv {0, 2d3,2d; +
2ds,4ds + dy, 2d3 + 3d,, 34, }. |

By symmetry there exist two splines s' and s° in S5 3(P§} and S5 3{P2). respectively,

such that

sl|a, = —12C (") — 12C5() + 5(:'3(-],
32 Ag = —120{}() + 503()

Thus s°, s!,s2 and M3 are linearly independent over A,.
We can choose M € 53 5(P5) such that

M;(z) = ag M3 (5 - z(1),5 — z(2)), re€ Ay, ag #0.

Indeed, if s°(z) Fa s°(5 — z(1),5 — =(2)), z € Ao, for all a € R, since s"(z)|a,, s°(5 —
z(1),5 — z(2))|a, and M3 (z)|a, are linearly dependent, there exist {c;}? c R\ {0} such
that

c18%(z) + cz9°(5 —z(1),5 - z(2)) + caM3(z) =0, =z € Ao

Let
Mg(I) = SG[I) + (cafcl)Mg(I) = Sg‘a(Pg),
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M

Then
ME(I) = —(C-z;rﬂl}Mg(ﬁ—I(l),5—' I(z)), z € Ag.

Similarly, Mi(€ S;3(PL)) and M](€ Sz,3(P5)) can be chosen such that
Mi(z) = alﬁM§(2 — z(1),5 — z(2)),
ME{I) = EEME(S o I(l), Z - :::(2)],:: & Au,ﬂl - #: 0.

In addition, {M}}] are linearly independent over Ao.
Lemma 3.4. Let f € Sz, suppf C RZ2nJ0, :wl".l]2 and suppf lie between the rays
2:‘:1’-1 + R+ d:_t, _ﬂ-ﬂd 2d2 + R+d3. Tren

f= Z bO M- — (4,4)) + Z 83 M3 (- — (5,1)).

l-ﬂ

The lemma is easily obtained from Lemmas 3.2 and 3.3.

Once having Lemmas 3.1-3.4, we can utilize the same technique as employed m 1}
to obtain the following |

Lemma 3.5. For any func tmn ¢ in Sz 3 with a compact support there exisis a unique

linear cambmutmn of functions in U U M- —v), t.e.,
i=0 vEV,

3
b= D aiuM(-—v)

i=0 vEV;

where V; 15 a finite subset of Z%,i = 0, 3. Furthermore, if supp ¢ is convez,

3
U U  supp Mi(-— v) C supp 4.

s=0veV
&y 70

Now Theorem 3.2 easily follows from the linear independence of {M3}3 and Lemma

3.5.

Let {N:i}3 be the four splines obtained from the four “minimal support” splines in
S22 by convolution with M) ; ;. Their supports are shown in Figure 3. By the uniqueness
of the minimal basic system, we can readily know {N3}J fails to be a minimal basic system

in Sz 3.
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