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Abstract

A numerical method for solving the ill-posed Ramm integral equation is presented
in this paper. It is found that the method is stable and more accurate. Particularly,
when the given data is contaminated by noise, satisfactory results are obtained by using
the algorithm of this paper.

§1. Introduction

»
In this paper we consider the numerical solution of the following Fredholm first kind

integral equation which was derived by A.G.Ramm in (1], |2]:

45

_ t
T =) (1.2)

where
B = {zlz € R3,|z — 29| € d,29 = (0,0,—a),a > d},

s {ZIE = (3'1,22,33] e Ra,z:a == 'D},

z =(z1,22) €P, ¥ =(y1,4n) €P,
f(z',y') is the datum which can be measured, V (z) is the wanted solution,

1

2" — 2| |y - 2|

K(z2',y') =

" is the kernel function of (1.1). Clearly, K(z;2',y’) € C*{B), so equation (1.1) is ill-
posed. We will present an efficient numerical method for solving {1.1) and give satisfactory

computing results.

§2. The Numerical Method

2.1. Super-Isoparametric Finite Element [4] Discretization of (1.1)
Now we present the super-isoparametric finite element discretization scheme for the

numerical solution of equation {1.1). The method is as follows.
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Subdivide B into a set of nonoverlapping hexahedron ¢;,: = 1, 2,---,p, l.e. B =

p

U &, 5 na,* = ¢,3 # j. The subdivision points are 21,22, "*,2n. And get a parametric
i=1

mapping for each element

e; +— . (2.1)

Zy = fl{fl n, g)l s = fﬂ(‘flﬂrg]r Z3 = fs(f: 7 f): (2*2)

where & is the standard element-cube, and f,, fa, f3 are polynomials. We find that, for
the ill-posed problem, a very wonderful form of element mapping is the so-called super-
isoparametric element in which the order of the mapping functions f;,s = 1,2,3, 18 grea.t:er
than that of the shape functions in €. Here, we use 20-node two order serendiping-type inter-
polation for coordinates (21,23, 23), and use 8-node irilinear interpolation for the unknown
function V. If cﬁ;(f ., ¢) represents a standard type of the finite element shape function for
a 20-node element in the local domain [4], we can write the mapping relationship of (2.2}

for each element as
» 20

) zZy — Z 31;'9'5:-. (2.3)

=1

20

z3 = Z Zrzjﬁ's [2-4)

=1

20
23 = Z Ha.f‘f’:': (2-5)
1=1

in which ¢ = ¢;-[E,q,§). |
Let ¥3(¢, n,¢),7 =1,2,---,8, be a system of trilinear interpolation base function [4]
i1 the local domain. Then the finite element approximate solution of V in & can be written

in the following form

| 8
vh =) V;¥5(€n9)- (2.6)
e |

For given I: = (Ili: Iﬁi)ly‘t == (yh'r y2i); we have

P

fB K(z2,y)V(2)dz =) [ K(zz,u%)V(z)dz. (2.7)

=1 "¢

In any element ¢,

[, K(zzh )V (2)dz ~ [, K(&m, 25 %0) ) Vs W51 |dednds
. ]

' (2.8)
3 |

§
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where 4 is the number of net points for element ¢;,J is the Jacobi matrix of mapping
(2.3)-(2.5), and |

agp = [ K&, 5550, ) 451 dednds (2.9)
in which

K(Emeahl) = {[(an— 3 01897 + (a2 — 3 22692 + (3 20692

z

X[(oss = 3 218507 + (v — 3205507 + (3 20,8577}
J ’ J . (2.10)

" The o is computed by using the Gauss numerical integration formula.

Properly choose [zz,yé)l,i = 1,2, - - m, substitute (2.8) into (2.7) and add the coeffi-
cient a;; to the basis of the number of net points, i.e.

a;y +a;y — ais. (2.11)
Now (1.1) can be written as an overdetermined linear algebraic system:
’ . _

AV =F (2.12)

where

V — (V].jVi:i PR !Vﬂ)l VI- = V(E{),
F=(f1:f2|'”rfm): : j,-=f(a:;,y,'-'],

and A = {a;;) is an m X n matrix with elementa a;;,t =1,2,---,m, 7= 1,2,- .-, n.

2.2. Regularisation of the Discrete Problem

The discrete problem (2.12), related to the integral equation (1.1), remains “ill-
conditioned”. It follows that a small random variation of the data f{z’,y’), or equivalently
a rounding error in the computation of the matrix elements, may induce an unacceptable
perturbation on.the computed solution of the overdetermined linear system.

To avold these difficulties, we have adopted a classical Tikhonov regularisation pro-
cedure {3]. In practice, we try to compute the regularized solution-V, of {2.12), which

minimises the following functional
|AV — F||3 + afi?(V), (2.13)

and is near to the exact solution V in the sense of the L; norm. If (1 is appropriately
chosen, the second term has a *smoothing” or stabilizing effect on the regularized solution.
We take the smoothing functional {12 as

(V) = | LV]2, (2.14)

where L denotes some matrix, normally a discrete approximation to some derivative op-
erator. And H = LT L is the symmetric positive definite matrix. Especially, we can get

H=1
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We assume that the right-hand side of {2.12) is affected by a random error &, such

that
lell? < 6%

for a given §2. From now on, we consider F = F. + ¢, where F, is the exact (but unknown)

right-hand side. Due to the error, we have in practice
|AV — F|IZ = |le|l2 < 6%. (2.15)

Obviously, the minimising problem (2.13) is equivalent to computing the quasi-solution

of the following equations

A F
V = ; (2.16)
al 0
We use the orthogonalising method and properly choose the regularization parameter

a for solving (2.16). Thus we obtain satisfactory results.

: = §3. Numerical Results
In order to assess the numerical performance of the method outlined in the previous
section, we have carried out some numerical experiments. The computer program was

structured as follows. First let
Q(Va,a) = [|AVa — F|3 - 6. (3.1)

It follows that we can determine a value @ > 0 such that Q(Vs,a) > 0. For example, as
5§ = 0.1, we can take & = 0.2, Therefore, a better value of the regularization parameter
can be obtained using s simple optimum seeking method 5]. For given a € (0,&), the
linear system (2.16) is solved using an orthogonalizing algorithm. Once the gsolution V4
corresponding to the current value of o is known, the function Q{V,,a) is evaluated. I
Q(Va,x) > 0, we determine a new o in {0, &) by using the optimum seeking method and
solve again the system (2.16).

Repeat the above-mentioned procedure until @Q{Va,a) < 0 is obtained. Then Va i8

the wanted approximate solution.
In all the numerical experiments reported in the following, we assume in (1.1):

B = {2}z € B, |z — 2| < %,z{, = (0,0, -2)}, (3.2)

and subdivide B into seven nonoverlapping hexahedral elements, with a total of 16 discrete

points: 23,23, ' -,%16. Lhe partial numerical results are reported in Tables 1 and 2. Notice
3] ;
.that in Table 1 the random error € = 0, and in Table 2 ¢ = F ¢’ Z(u,.,.,.g,- — Vp42i-1) iRt

; s=1
which &* ig noise strength, $ = 1,2, - - - are the well distributed stochastic digits.
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Table 1
Exact Computed Computed
z; Solution Solution Error Solution Error
a = 0.005 a = 0.0025
1 1.000000 0.993638 0.006362 0.961433 0.038567
2 1.000000 1.018251 0.018251 '1.052651 0.052691
s 1.000000 0.992883 0.007117 1.050396 0.050396¢
4 1.000000 0.968707 0.031293 0.960768 0.039232
5 1.000000 0.837799 0.162201 . 0.813886 0.186114
8 1.000000 0.856785 0.143215 0.880029 0.119971
7 1.000000 0.842085 0.157915 0.877937 0.122063
E: 1.000000 0.910660 0.089340 0.905877 0.094123
9 - 1.000000 1.0056792 0.005792 0.966629 0.033371
10 1.000000 1.044140 0.044140 1.052121 0.052121
11 1.000000 1.019308 0.019308 1.065685 0.065685
12 1.000000 0.998377 0.001628 0.978395 0.021605
13 7 1.000000 1.204432 0.204432 1.145275 0.145275
14 1.000000 1.158520 0.158520 1.215026 0.215028
15 1.000000 1.066508 0.056508 1.068823 10.068823
168 1.000000 0.960621 0.039379 0.920464 0.079536
|AV. — FY ' 0.14460108 x 102 0.78487745 x 103
Table 2
Exact Computed Computed
35 Solution Solution Error Solution Error
¢ =0.1,a =001 ¢* =08, =0.01
1 1.000000 1.010064 0.010064 1.007289 0.097289
2 1.000000 0.99751% 0.002481 1.011496 0.011496
3 1.000000 0.942453 0.057547 0.871507 0.028493
4 1.000000 0.964378 0.045622 0.872004 0.127006
5 1.000000 0.848778 0.151222 0.907771 0.002229
B8 1.000000 0.842353 0.157647 0.856397 0.143603
7 1.000000 0.811157 0.188843 0.732659 0.267341
8 1.000000 0.899413 0.100587 0:84B459 0.151541
g 1.000000 1.032317 0.032817 1.164914 0.164914
10 1.000600 1.048519 0.048519 1.160798 0.180798
11 1.000000 0.986703 0.013297 0.929028 0.070972
12 1.000000 1.001886 0.001886 1.000768 0.000768
13 1.000000 1.250012 0.250012 1.475600 0.475600
14 1.000000 1.132012 0.132012 1.161211 0.161211
15 1.000000 1.046130 0.046130 1.048916 0.048916
16 1.000000 0.979698 0.020302 1.044212 0.044212

||AVa - F|

0.3419820 x 101

0.2719986 x 10¢
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