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ERROR EXPANSION FOR FEM AND
SUPERCONVERGENCE UNDER NATURAL ASSUMPTION~

Lin Qun Xie Ruij-feng
(Inststute of Systems Science, Academia Sinica, Besjing, China)

In this paper, we derive the error expansion for finite element method under natural

assumption and discuss the superconvergence as a special case of error expansion.

§1. Introduction

In a survey by AKrigek and Neittaanmaki various types of superconvergence for FEM
were discussed at some cases. But we can not expect the superconvergence for the displace-
ment of linear finite element solution. At that case we can raise the convergence accuracy
congiderably using Richardson extrapolation. On extrapolation for FEM Chinese - German
group has obtained a lot of results under some assumptions. See a survey by Rannacher. In
this papér, we try to unit the discussion of superconvergence with the one of extrapolation.
We deduce the error expansion under natural assumptions and discuss the superconvergence

as a special case of error expansion. Consider the model problem
—Au=fin{l, u=0 ondll (1.1)

where (1 c R? is a convex domain and has smooth or piecewise smooth boundary. We use
the finite element space over piecewise uniform or piecewise almost uniform triangulation
to construct the finite element solution of problem (1.1). Let u? and u’ be the linear finite
element solution and interpolation of the true solution respectively. We derive the following
expansion
n—1
ub —ul = E hZ*el + 7" {(1.2)
K=1,

where the coefficients ¢ are the finite element projections of the weak solution of problem
(1.1) with defferent right hand side, and the remainder r* satisfies

""'hlll.nu.ﬂu <c |lnhlh“"

.where a,, depends on the situation and (1, is the subdomain of {1 which we ghall discribe in
details.

*Received November 30, 1987.
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As a special case with n = 1 we have the superconvergence estimate
lu* — ' ll1,00.0, < ¢h®|InA].
Replacing Vu”* by some kind of average gradient Vu® we obtain
(Vu* - Vu)(p) = O(h™ | In k]

for any nodal point p in 1.
With n = 2 in (1.2} we get

ub — ul = B! 4 P (1.3)
from which we have
1 i §
5 (442 = *)(p) - u(p) = O(h**|In ]),

S V(42 — w*)(p) - Vu(p) = O(h** In k). (1.4)
P
For the proof of {1.3) we emphasize the situation when £ is a polygonal domain and

u is of usual smoothness. At that case a; = 28 — ¢ where ¢ is any positive number and 8
depends on the interior angle of (1. In the last section we prove (1.4) with az = 4 when 02

18 a smooth domain.

§2. Error Expansion on a Convex Polygonal Domain

Let 11 < R? be a convex polygonal domain with the corner points {0;}. We consider
the problem (1.1} and its finite element solution. Choosing an arbitrary point o in {1 and
linking o with each corner point o,, we subdivide {1 into several macro-triangles {12;} with
edges I'; = 56;. Let T, = { K} be a regular triangulation of ). Suppose that the restriction
T; to each (1, of T}, is uniform, i.e. each side of each triangle in 7T is parallel to one of
three fixed direction vector. Assume that S, C H]} is the standard piecewise linear finite
element space and u” is the finite element solution. In order to evaluate the error expansion

we consider the integral

I{u,v) =LV[uh—u"]?udzz'/{;‘?(u-—u")‘?udz

(2.1)
= E/ V(u-u!)Vvdz, VveSsh
3

It suffices to expand the integral

[ V(s — u’)Vudz.
0.

B
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For umfnrm triangulation T; we introduce the standard notation as in |2]: s, pi, 7y,

i hi, A, 8; D;. Our discussion is based on the following Euler-Maclaurin formula:

L

n—1
/ (u—ul)ds = )  Brhi* [ D?* uds + k2" [ Bn(8) D™ uds (2.2)
8 =1 a

where An(s) € C3(s;) and B.{s) can be extended to a function B; € C(f1) such that

B;il,,(5) = Bnls), Di+2Bi =0, Bils;sz = 0-

By the argument used in [2]|, we derive

n—1 |
f V(u - u!)Vodz = Z hZ* Z ([ L§h+1uudz + L§k+1uud5)

n—1
+ z h2* L% 4 (0)u(0) + h*" E Cii f B;;D; 42 D"uD;y vdz
i5 (4

» ﬂ:l

+h2"2[ ﬁ"_(s)Lfnuafuds -
iy

(2.3)
where LT are some differential operators of order m, ¢;; are some constant independent of
h, B;; are the function B; defined on {2; and 3, denotes the tangent derivative along I';.

Letting ex € Hj,r2 € Sh, 2! € Sy such that

(Vex, Vi) = Ik(p) for ¢ € Hy,
(Vrk, Vv) = I (v) for _ve Sk
(Vz}, Vv) = F;(v) for veSh,
we may write
b —ul = nz_:l h2e(eh + cxGP) + K3 (rh + > 27) (2.4)
k=1 i

where ( is the Green function with singular point at 0. In order to estimate the remainder
we need the regularized Greer function g, in [2]. With any fixed directional derivative 0 we

can write

ark(z) = (Vrk,Vgh) = L.(¢}) = Zc,,/ B;iD; 2D uD; 140 da,

|8r8(2)| < cllullzn+1,00lgH1.1 < €| InAf|lflznt1.c0,

721,00 < €l1nAljuflznt1,00-
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To estimate z;‘f we write

Bn(s) = Bn + h?ﬁ::+1(3)1 Vs € s,

with 8/, (s) € ct(s:). Then

9() = Fy(}) = [ uls) L2 udeghds

zﬁn/;
=5 |

V2Hz)| < cllullzns 1,00

Li*ud, gtds — h? /F Br41(8)3,L3"ud, gl ds
5
8, L3 uglds — hf/r Brn+1(8)3: Li™ud, gbds + B, L3™u(0) g7 (0),
| J

o2lds+h [ |9ghlds + 102 0)),
T; Ly

V()] < cllullant 1,00 ( f V92 ldz + 162 (0)]) < cllullzns 1,00 (|1 4] + g2 (0)]).
For a fixed domain 1, such that {3, doesn’t contain 0, we have

|25 l11.00,020 < €Ik J[tlf2nt1,00-

Hence, we can write (2.4) as

ri—1

uhb — ol = Z h2 (el + e GP) + 7, (2.5)
h=1

with ¥ satisfying
IFall1.c0,02, < ch**|Inh|. .

Taking n = 1 we have the superconvergence estimate
lu® = w'|l1,00,0, < ch®|Inh|. - (2.6)

For any interior node p, there are two opposite elements K and K’ with p as their common
vertice. We define V by

1
Vu(p) = E[?ulx + Vulg,), vES,.
Then we have in [3]

(V' — Vu)(p}]| < ch?|lulls,coxur,
(Vu! - Vu)(p) = h%&(p) + O(h*)||ulls,c0, 5 uxc (2.7)

with some function £ independent of A.

Now we have the superconvergent approximation to the true solution:

I(Vu® —~ Vu){p)| < ch®|In Al.
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By the localization method {(cf. Wahlin), for £3; C {1 such that {1, C {1; and
(311, \ 90) U A1, = ¢, we have

|l ~ 6| 1,00,0, < h?|Inhllulls,c0,0, + llu— 6”220, (2.8)
Taking n = 2 in (2.5},
uP — uf = h2(e} + ¢, GP) + Fa.

We assume {1, doesn’t contain the corner point of {} in addition. Because ¢; and G are

smooth in the neighborhood of {3y, an application of (2.8) gives

le} — e1ll1,00,00 < ch?|InAl;

|G! — GM)|1,00.00, < ch?|Inh|.

We obtain
uh — uf = h%(e] + a,G') + R®

with
”Rhlllrmtnﬂ E ch‘l hl hl'

From the above expansion and (2.7) we have
(" — u)(p) = h*(e1 + c1G)(p) + O(h*|In h|),

(Vul — Vu)(p) = h%(Ver + c1 VG + &)(p) + O(h*|In hj).

§8. Local Analysis of Error Expansion on a Piecewise
Uniform Mesh With Less Smooth Solution

In section 2 we obtained the error expansion and derived superconvergence as special
case when the solution u is very smooth globally on (). But the solution is not so smooth
usually even if the right hand side f of the problem {1.1) is analytic on {l. Ta this section,
we investigate the error expansion provided only that f is sufficiently smooth. As in section
2, we let {o;} denote the corner points of {}. Denotes the maximal interior angle of {1 by d&.
Set f = x/& Without loss of generality, we assume 8 < 2. Let d(z) = H iz — 0;|. For any

| )
real ¢ and integer k define the space

HE = {u/d*t1PlgPy € L2 for any |fB| < k}

with the norm

- |
| |Hu”|k‘a‘ﬁ = ( Z: _/;]dz"+2lﬂliaﬁu‘2dm) |

- |Blsk
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It 18 known that
fEH::_z imp]iesueH: for a>-1—-f8 and k>2

We also use the piecewise uniform triangulation described in §2 to construct the finite

element solution. Using the standard analysis for the interpolation function, we can prove

llu — w!{l]1,a.0 < ch®P)||ulllz.5.0

fora—1< < a.
Let u € H2 nC3(N) for some a. In order to apply the local estimate {2.3), we need

to estimate ||u — u"||_; 2. Using dual argument we have
lu — w*fl-12 < ch 22|y — |,

pvovided 1 < p < 2,9 = F_%[ and go < min(g, 2—2—-) Taking p,r such that r— 1 < a <

r< - 2, weAave

P '
u~ u'lip < [llu = ' fll1,r < ch""%|Ju]|]2.a-

Then choosing the numbers p, r, g9 appropriatly, we can obtain
lu— u™)|-1,3 < ch? 271 luflla,a
with # — 3 < a < 0 and ¢ > 0. Inserting the above inequality in (2.8) we derive

lu' = w*1,00,00 < A7l l2,a + ch?| In A]fiulls 00,0, (3.1)

with #—3 < a < 0,6 > 0 and u € H; N C3(().

Now we come to discuss the error expansion. Assume that {1 is a fixed subdomain
of {1 such that )y doesn’t contain 0 or any corner point of {1. Let {lo C D, ¢ Dy C 1
satisfy that 0 € D;, D; doesn’t contain any corner point of (1, (8D, \ 3Q) U D; = ¢ and
(3D \ 3flp) N s = ¢ . Choose function p € C**{f1) such that rp‘m = } and 'pln\D, = 0.
Suppose f is sufficiently smooth. From the properties of the solution of elliptic problem on
a polygonal domain, u € C®(02) N H2 for a > —1 — A. Set u; = pu and uz = 4 — u;. Then
u; € C%(1). Using the results derived in section 2, we have the expansion for u; : |

u? —ul = R2wf + %, P10, < ch*|In A,
For u; we use the error expansion (2.4):

uj —uj = h¥(e} +c1G*) + A4 (r} + ) _27)
E
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with ¢, rg, z_:-‘ such that

(Ve,, V) = Z( Liugpdz + [ Liuzpds) for p € C§°(N),
: (1, I
3 ¥

5

("G’rg, ‘?u] = Zcﬁf Bﬁ Di+2D:U2D{+1UdE for v € Sh,
(y

LT o

(Vz},Vv) = | Ba(S)Ljuz8,vds for ve S™
I

As smooth case in section 2, we have
IG* — G¥||1.00.0, < ¢h?|1n .

Because u € C°(12) N HJ for @ > —1 — f, we can prove e; € C?(Q) N H2 ¢ C3*(01) N H? for
a > 1— B. An application of (3.1) gives

e = el < kP

In order to estimate the remainders we need some properties for the regularized Green

function g,. By the argument used by Blum and Rannacher, we have
Mlgslili.e.0v00 < |9:]ll2.0.00D, S €, for z€ Qo0 > -8 -1

Because Bj; come from Ba(s) which satisfies that f2(s) € C}(s;), B5(s) € Cj(s:) and
|D*Ba(s)| < ch™® for k=0,1,2,---, we have

|Bjilz)]| K ch™@d* for0<a<2.
Noting that u; vanishes on D;, we obtain
@rz(2)] = [(Vrz,Vg;)
< ch™® /; d*|V°uz||Vg.|dz + ch™"|lgs ~ g2 |}1,00.0\D, /;] & |V u,|dz

.hﬁ“r—l—l e
1,-8-1,0\D, Te I”“‘i-‘l”E.r 4—¢

< ch™*|luallls.a+p-s5llgs |
< ch™*|||uzlls,a+p-5 + ch? "1 luzll[s,r - 4o

Provided < B,a+ 8 —-5>—F—1and r —4 > —f — 1, which yields

rofl1,00.0, < ch?#~4-¢  for e > 0.
2 ¥ 0
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As to z;?, we have

19z (2)] = |(V2", vgh)

< che / 4| L3u23, g, lds + ch™"|lgy — g l1.co.np, /r & | Ltuz|ds
r, T JF;

]

< ch_“/ |V{d*Liugd, g, )ldx -Fchﬁ_’"l""/. IV(d"L}us)|dz
¥ {1

< ¢h™luzllls,a+5-5)llg: lll2,- p-1.0\0, + 7 Ll |

f-:' chZﬁ—i—l

with the number o, 3, r appropriately chosen.
Collecting all above relations, we obtain the error eXpansion

u — uf = p3,7 + 7P
f
with some function w € C*(f)y) and # satisfying

17 I 1,00,000 < ch?A=2.

§4. Error Expansion on a Domain With Curved Boundary

Let {2 be a bounded domain with a smooth boundary. For simplicity we assume that
{1is convex. In order to keep the mesh varying regularly, we use a kind of piecewise almost
uniform triangulation we are going to describe. In this section we give the outline of the
proof of the error expansion at that case. For the details we refer the reader to [6]. Now let,
us introduce the triangulation. Devide  into several parts {1; by some straight line such
that for each ), there is an invertible transformation ¥; mapping {); onto the square 0, 1]3,
which, together with its inverse ¢i = 971 is sufficiently smooth. In addition we assume
that for each interior straight edge I' of £); the restriction to I" of V¥ is affine. Let 7" be
a uniform triangulation over [0, 1] with node set N®, and let NJ"-‘ = gb.*[ﬁ"‘). Linking the
points in N} approriatly, we obtain a triangulation T* over ;. Then T" = UT}" 1s a regular
triangulation over {1. Such triangulation may be constructed directly {cf. [6]).

Now we anlalyze the properties of T" through T*. As in section 2, for any triangle

KeT", we introduce the notation py, §4, ﬂd, R, ta, f‘d. In addition we introduce the midpoint
dq of §; and the center §o of K. By h we denote the standard size of T : A = max Fld.
.Corresponding to K, let K & T}‘f‘ be a triangular element with vertices

p=vilfs), i<d<3.



410 | Journal of Computational Mathematics ' Vol. 7

A e e e A
We denote the associate quantities by sq, hg, nd, tds 94 909 A. Define
§(K) = ta- Ta.
Then, for any two adjacent triangles K and K'; we have
§(K) = —6(K') (4.1)
and the difference of the corresponding quantities between K and K ! are of higher order:
hy=h'y+O(h?), ta=-ty+O0(h) A=A+ Oo(h°). (4.2)

Using a Taylor expansion, it is easy to check that there exist smooth functions a4, ba
defined on [0, 1] independent of h such that, for all K € T/,

(i)hg = hag,(da) + A aa2(da) + O(h*),

(ii)ta = 6(ba.1(da) + h%ba 2(da)) + O(R7).
By the method used in |6] we can prove that there are some constants ¢,, and some

piecewise smooth functions W and F; such that
’

(V(u" - u!), Vv) = h“f Wodz + h% Y
2 ;

Fiuds + k2 cmv(Mm)+ Ra (v,v)
I, o,

where {T';}; denotes the set of all edges in {1 of all 11, {M,, },n denotes the set of all interior

corner points of {1; and
| Ra ()] < ch*(lvlhia + 3 lo(Ma)])-

As in section 2, we can derive that there exist some locally smooth function ¢ and some
function ro € S such that

ut - uf = k%! + 12, ||r2ll1.00.00 < cht|In k] (4.8)

where (1o is a domain bounded from {M,,}. A immediate application of (4.8) gives
(u" - u)(p) = hZe(p) + O(h*|In A)

for the nodal point p € {2o.
To discuss the derivatives, we have to deal with u/. By the Taylor expansion, we

write |
3.(w! — u)(pz) = bh10Tulpa) + §h103ulps) + gghidtulpa) + O(AY), -
4.9
33(u! — u)(p2) = —5had3u(p2) + $h333u(pa) + 217;’*333“(?2) + O(h?).
Representing the gradient V by a linear combination of the directional derivatives 35, and

_using (4.9) and Lemma 5, we can obtain the expansion

V(u - u)(pa) = hé ih‘&‘lB.-(Pg) + O(h%) (4.10)
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where IB; are some vector function defined on 1. For any node p in the interior of some f,,

there are two opposite trangles K, K’ € T* such that
p = p2(K) = p2(K').

We define i
Vu(p) = E(?‘UIK + Vulg:), forve St

Using (4.10), we have
Vul(p) — Vu(p) = h2IB,(p) + O(hY). (4.11)

Combining (4.8} with (4.11), we derive
Vu*(p) — Vu(p) = h*(Ve + B)(p) + O(h*|ln h|)

for any nodal point p in {1y \ UIIL,.
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