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Abatract

Jacobi algorithm has been developed for the eigenproblem of real symmetric matri-
ces, singular value decomposition of matrices and least squares of the overdetermined
system n » parallel computer. In this paper, the parallel schemes and fast algorithm

are discussed, and the error analysis and a new bound are presented.

; §1. Introduction

L

The accuracy of the classical Jacobi method |7] for the eigensystem of a real symmetric
matrix is comparable with that of QR. Especially, the computed eigenvectors are almost
exactly orthogonal and span a correct subspace. It is independent of the separation of the
eigenvalues. For eigenvectors, QR is incomparable to the Jacobi method. If the matrix 1s
_lose to the diagonal form, QR loses 1ts advantage [8]. But 1n speed, the Jacobi method 18
too slow.

The algorithm has had several interesting developments, since Givens transformations
without square roots were presented [3]. The Jacobi algorithm using Gentleman’s technique
has been developed, and an experimental code (1] produces a more accurate solution than
the classical version. The fast algorithm requires only 4n multiplications for each two-sided
transformations; apparently 50% of work can be reduced. But it is still not suitable for
systems of which the order is larger than ten.

With the development of parallel computers, the parallel Jacobi algorithm has been
given, and used to solve singular value decomposition problems and to find the least squares
solution for the overdetermined system [4]-{6]. The parallel fast algorithm is nearly n times
faster than the classical Jacobl method. We have reason to believe that the algorithm may
be efficiently used for the parallel computing of larger order matrices. The error analysis
of the Jacobi algorithm has been given by Wilkinson |7], and the error analysis of Givens
iransformations has been given by Gentleman [2], but they cannot be applied to the new
algorithm directly, because there are some differences between the two algorithms. In fact,
although their transformations are essentially orthogonal similar, the computed transfor-
mations are not in fast algorithm. In this paper, an error analysis and a new bound are

presented.

* Received December 25, 1987.
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§2. Fast Rotation Transformations

In the fast Jacobi algorithm a real symmetric n X n matrix A is reduced to a diagonal
form by a sequence of fast plane rotations R. Let A and R be the product of three matrices

respectively:

A=DBD, R=DBD! (2.1)

where D = diag (cf.:], D = diag (d;),d; > 0,:=1,2,---,n. A rotation similarity transfor-

mation m plane (p, g) of the classical method can be modified as
A=DBD, B=HBHT (2.2)
where the nonzero elements of H are defined by
hpe = @, hoyp =B, k=1 =12, -, (2.3)

B differs from B,only in the rows and columns p, g, as shown in (2.2). «, f can be computed

by the following equations:

1 =d3by, — d2bg,,
g = 2bye /(1 + sign(1){1* + 4d2d2b'*” U2, (2.4)

q P

a = gdgw ﬁ = _gdﬁ ' (25)
The diagonal elements in D can be defined by
dy=d}/(1~af), d;=d;/(1-ap) (2.6)

The transformation defined by (2.1)-(2.6) saves 50% of work by comparison with
- the classical algorithm. Notice that A = DBD is never produced before completion of the
process; therefore the iteration requires only B and D). The transformation B = HBHT in
(2.2) is no longer orthogonal similar; because the matrix H is not urthugnnal but DH D‘

18 orthogonal.

§3. Paralle]l Scheme

In the Jacobi method each transformation affects only two rows and two colurins.
Consider a sweep consisting of n(n — 1}/2 transformations, which should annihilate each
off-diagonal elements only once. The transformations in a sweep can be divided into n — 1
(or n) groups. Since all t:ansfnrﬁlatiuns in each group are disjoint plane rotations, they
can be simultaneous when implemented. Hence the algorithm is n/2 times faster than the

common one. Furthermore, an improved error bound can be obtained [2|. Some partition
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regimes have been designed [6], [4]. For example, suppose 4 iz an 8 X 8 matrix; a regime s

1 (1,2) (3,4) (56) (7,8)
2 (1,3) (2,4 (57) (68)
3 (1,4) (2,3) (5,8 (6,7)
4 (L,5) (2,8) (3,7) (4,8)
5 (1,6) (2,5) (3,8 (4,7)
6 (1,7) (2.8 (3,5) (4,6)
7 (4,8) (2,7) (3,6) (4,5)

In general, there is another scheme which is coded easily {1]. It can be shown as

L (42) B (4n-1) (Bin-2) o
2 (1,3) (4,!‘1) (S,n—- 1) (ﬁ,n— 2) ......
3 (l, 4) (2, 3] (5, n} (6, n — 1) .....

;1.-1'_ (1,») (2,n—1) (3,»n—-2) (4,n-3) ---- -

n * (2,n) {(3,n-1) (4n-2) (Bn-3} - -
t4. Error Analysis

Assume that the mantissa length is ¢t and let £¢ = 27°. From (2.4) and (2.5), After

much tiresome calculation, let H denote the computed value of H. We show that

H=H+F, |F| <6 H, (1+6)<(1+¢)°. : (4.1)

Thus, if a = (a;,a;)7,b = (b;, ;)T and 5 = Ha, then |
b= fi(Ha) = b+ f, Hfo] < z]b), (1+2z) < (1+¢)°. (4.2)

Let v be an n-dimensional vector, where n = 2k. H;{i = 1,2, .-, k) denotes a sequence of

disjoint transformations.- Since the errors are independent, equation (4.1) gives
Uk =fl(Hku] Euk'f"fh;Hk “—‘Hka_l*"Hl, |fk| ﬂ IIUJ:[- (4.3]
Clearly, for an n X n matrix.C, we may write

Ck = fl(EkC) = Oy + B, kal < ;-:|Ck|.

For the two-sided transformation, if the higher order small quantity 15 negligible, the bound

has only factor 2 extraneously. Thus
Cgk — fI(HkCHk) = Cop + sz, Czk = HkCHE, IPle < IIC’zkl. (4.4)

For convenience, we consider n — 1 groups consisting of n independent transformations
in a sweep. Let T; denote the product of the n transformation matrices H;,: = 1,2, ---,n,
in the ¢-th group. From (2.1)-{2.6}), the general iteration is given by

D;=D;_A7Y, Ay = diag (d0Y).
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Then
Dy = f{D)AT'} = D2+ Gz,  |G2| Sy|Da|, (1+y) <(1+¢). (4.5)

Equation {4.4) gives
B, = fi(H,B,AT)= H,B\HT + F, = B, + F,, |F,| < 2z|B,). (4.6)
The transformatior: becomes
Az = RyART = D,B,D;, R, = DaH, D7, ' (4.7)
In fact, the higher order small quantity is negligible. From (4.5) and (4.6), we obtain
Az = (D2 + G2)(Ba + F3)(D2 + G3) = Ao+ E;, || Ez|| < e|lAll, e=2z+2y. (4.8)

Thus
A < Aol +eldall < L+ )AL~ (4.9)

In practice, A} = R, AL RIT can be computed, where A4, R, denote the values of
Az, Rz obtained from A;. We have reason to neglect the difference between R} and R3, be-
cause only the similarity of A3 and A3 = Rz A3 RI is most important. By similar reasoning,
from (4.7)-(4.9) we have

13 - RQAZEZT e E;, |E;3| E E,jogﬁg"

Thus |
As=As+Es, || Es|| <[(1+¢)% — 1]|| A]. (4.10)

The recursion can be implemented in sequence if r sweeps are applied. Then there

are rn groups of transformations. Let N = rn. We have
Ay =An + Ey, ||Ex] 2@+~ 1]JAf. (4.11)
If the higher order small quantity is negleted, then
IEx|l < NellAl|. (4.12)

Note that the elements below the diagonal in each transformation are not computed but are
assigned the same value as those above the diagonal. The matrices are exactly symmetric
and so are the errors. Hence, according to the Weyl theorem [9] and equations (4.11), (4.12)

we have :
|Ai — ui| < Nel|A| (4.13)

where A; = X;(A), u; = m(jy] and Ay A2 < - < A,y 4y S 2 <o < ptyy. In general,
letting r equal six we have the bound

A — wi| /(2?2 < 180 - n27t. (4.14)
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If Ay and Ay are diagonal in machine accuracy, then
(B — 1)?)Y2/(B(2%)"2 < 180 - n27". (4.15)

Now we consider the computational accuracy of the computed vectors. Equation
{4.11) gives
Ay = Anx + Ex = Ry(A+ G)R} - {4.18)

where G = R}, Ey Ry is considered a perturbed matrix of A. This equation implies that the

parallel fast Jacobi algorithm enables us to obtain the eigenvalues and eigenvector matrix
Ry of perturbed matrix A + G exactly. We also find a bound of G as {|G|| = || Ex|l.

Furthermore, there is an error in computing Ry since
RH = anan—l--Rl = DrnHrn—IHrn—i---Hl-

Suppose D), = I. From equations (4.1) and (4.5) we obtain the foilowing result:

D,.n = fI{(TAT1ASY. -ﬁ_,‘.,hl_) = D14 (rn — 1)y),
—fz(Hrﬂ_lﬁrﬂ_g*”Hl)EHN(I'i'(Tﬂ—l)I). ;

Hence
Ry = fl{Diy AN) = Dy Hy(1 4+ (rm—1)(z + y) + €) = Rn(1+ 13rn - €)

Let r equal six; we have
|fny — Rn|| < 78n27%, (4.17) -

This bound shows that the computed eigenvector matrix is almost orthogonal, and is

close to the exact eigenvector matrix of A + G.
§5. Comments

In order to solve an eigenproblem, generally the parallel fast Jacobi method discussed
above needs 6 times aweeps. It eans 6n steps will be taken. The same 1s required in QR 3n
iterations. In addition, every iteration reducing a matrix to a tridiagonal one by the QR
method containts about n/2 steps. It means that QR has (3/2)n® steps. In fact this does
not mean that the Jacobi method i8 n/4 times faster than QR because communications are

a heavy overhead 1n the machine.
On the other hand, a slight numerical unstabﬂlty might result from algorithm (2.1)-

(2.8) with the growing of elements. We suggest that an alternative fast rotation should be

used instead of the one presented in this paper when the rotation angle is larger then 45°,

let transformation H be [ E: . ]'ra.ther than [ ; {: ] The determination of rotation

angle and the selection of computing formulas must be done before each transformation is
carried out. We think it is not difficult to keep the numerical stability of the paraliel fast

Jacobi algorithm.
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Appendix

Round-off error in Fast Rotation Transformation
Let mantissa length be ¢t and unless otherwise specified, &; satisfy (1 — 27°) < (14 &) <

(14 2-1).

i) = dﬁbpp(l gy )~ dgbqq(l +e2)=1+e3), (1 -2 < (1+e3) < (1+ -2
FI(1?) = P(1 + e3)?(1+ &4) = B(1+e5), (1 - 27*)° < (1 +65) < (1+27°)5
fi{4d2d?bZ) = 4d2d7b2 (1 +e6),(1-277)° < (1+66) < (1 + g
FUP +4d2d2b2 ) = IP(1 + e5) + 4d2d2b5 (1 + &6) = (I + 4d2d2b2 )(1 + €7),
(1-27")° < (1+er) <(1+27%)%
i+ sig(t)\/f2 + 4d2d2b2 = (I(1+ ea) + sig(1) (% + 4d2d262,) /2 (1 + £7)' /%) (1 + £5)
= (1 + sig(})(#* + 4d§d§bﬁq)”2)(1 +60),(1—27")4 < (14 ) < (1+27%)%
Flilg) = 2b,4(1 + €10) /(1 + sig{t)(1? + 4d2d2b2 )1 /%) = 9(1 + ey ),
(1-27%)% < (1+4e11) < (14 27%)5%
fila) =91+ en)d?(1+ e2) = a(l +€13), (1 -27%)° < (1 +e13) < {1+ i
figy=(01+ 5:13): (1 — Z-t)ﬁ < {1+ Eis) <(1+ 2_1)6;
Fi(d?) = d2(1+ €14)/(1 — o1 + £13) (1 + €13))(1 + £15) = d%(1 + €16),
(1—27%)1% < (1+e16) < (14 27F)%

ft(&'g) = cf'j(l +ele), (1—27) " < (1+¢€g) < (1+27%)H.
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