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~ Abstract

" 'Phig is the first half of an articlo which develops a theory of the hierarchical elements for the
h-p version of the finite element method in the two-dimentional cass. The Eppronmé.ﬁnn p:mparhau
of the hierarchical elementa are dlauussed 'I!ha second pa.rt wﬂl addrem tha mnve;génda Tate, when
geometris Moshes' are used,

~§o. Introductlon |

In the ﬁmte elem?nt method whan ﬁonfurmng elements are used, the rate of
convergence for an Elhptm problem ig determlned by the Epproxlmablhty of the
ﬁmte element space 1o the solution’ (Uéa’ 5" Lemma.) Ag a ﬂonsequenﬂe “the
‘select ion of a good finite element sphoe iy thie" “key for aohievmg ‘maxinial rate of
CONVOIZence.

There are three basic versions in the finite element method. In the % version,
“Which 15 ‘the #raditional one, the mesh size & goes 1o Z6T0 Whila the ﬁegraes of
elements are fixed. In contrast, the p version inereages tha degrees and fixes the
mesh, The A-p version combines the two and obtams eonvergenﬁe by hoth reﬁnmg
the mesh and increasing the degrees. = | | - j |

Sinoce the ~-p version considers both megh and degree distribution, it is more
edvantageous in the approximability of the finite element space. It was proved in
[1]-—[3] tha.t in one—dlmensmn if the solution has a Elngularﬂsy of m"'—type ‘the best

Order of convergenne for the h—p version ig g, (“"1‘) s where N is’ the number
‘of degrees of freedom of the finite element spaoce and ¢y= (\/— 1)2=0.1715. To
sohieve this rate ef convergence a geometric mesh with the ratio g, and a linear
distribution of degrees of elements with the slope 2a—1 were used. In this setfting,
‘the elements closer to the singularity have smaller sizes and lower degrees. If the
«degrees of elements are uniformly distributed, they should be increased as a
multlpla of the number of the elements with a facior 2:::—1 whmh gives a rate

of Gonvergenae of q.-;."; (-3 . Tn 2—d.11nens10ns ‘when on a cornered. dumam
+*-type singularities of the 50111131011 will arise at the corners. It was shown in [4]
1hat when a geometric mesh is used and the degrees of elements are either optimally.

* Received Boptember 16, 1988.
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or uniformly distributed, an order of convergence ¢~ 7"v¥ (qf >0) can be reached.
However,the rules for selecting the ratio of 'th peometrio mesh and for the inorease
of degrees of elements were not clear. '

An important property in one—dlmenmon is tha.t the ra.tlo of the gaometnn mesh
for achieving the besh convergence order is independent of the strength of the ingn-
larity, i.e. the value a. This has been called “the 0.15 rule”(theoretically 0. 1716).
It has also been guessed that this rule could be valid also for two-dimensions. In this
paper weo will show that this guess is true for optimal mesh—degree combinations.

The basic tools for implementing the A—p version are the hierarchical elements
and local mappings. In contrast with Lagrange elements and Hermit elements,
when the degrees of elements need to be incresed, one can simply add new basis
funotions to the old bagis set. The concept of hierarchical basis can go back 1o the
original Galerkin’s method. It was introduoed by [5] in' 1971 and Euggeﬂted by 6],

[7], [8] for p-version in the early 80’s. The hierarchical basis is closely related
‘with spectral expansions. And it has been twsed in- the p—verﬂwn ‘fthite element
analysis program PROBE. In this paper we will give a more detailed anslysis for
the approximation PI'GPBI"IIIBE of the ﬁmte element apa.cse ba.sed on the hierarchical
elements.

The use of local mappings is an old tectinique in the finite element calculation.
To handle the curved boundary the means of isoparameiric elements were succes-
sfully used in the » version. In this paper 8 dlElGIIEElOIl W:I].l be gwen to it in coope-
rgtion with the hierarchioal elements.:’ ' - :

This part contains seotion 1, O° hiera.rohmal elements in one-dimension and
seotion 2, the Q° hierarchical elements in $wo-dimensions (the square elemeis). The
other two sections (gection 3, (° compahble local mappings and geometric meshes
and seotion 4, the A—p method and its error analysis) are left to Part II.

~ § 1. C° Hierarchical Elements in One Dimension

- 1.1. Preliminaries
In the following, H', H* I, are used in the uaua,l sense for Sobolev spaces.
P.(z)(n=0,1, 2, «=) aTe the ﬂtandﬂrd Legendra polynomials: . .

'(m)l:W [(‘” —1)"1s {1.1.1)

For the properties of Legendre polynomials we refer to-[7], [8] and [9] The most
important properties for our discussion are listed below: - -
4% {5 (a:)} is an orthogona.l basis of Ls(—1, 1). And we have

j Pl Pl o 2?;1  dun @)

{ 0, if n#=m,
m 1 ]fﬁ::fnfz'

27 Ifu€la(—1,1), then u(m) h&ﬂ a Founer—Legandre expansion (or simply
the Legendre expansmn)

T w@~ B whe), (1.1.8)

where
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where Uy, == 2“; L J'I:l u(2) P, (w)dz. |
87 Ifu€ Ly(~-1, 1) then (1.1, 3) eonvergeﬁ in L,(—l 1) and we have
s _— | . -
J u(a)*do E:.'"’a‘ 2-n-+-l _ 1:4)
4%  Denote B |
| Q@ =" P.ar, wam1 - S LB
and Qo' (@) = 15{3; Qo(z) = lgm- &

It is easy to see that ) | "
“(-1)_-1, G(—-1)=0, @'(1) =0, @ (1) =1,
and Q,(+1)=0. o 3 J
- 80 Letu€ Lg(—1, 1) be the derwatave of funotion v(); thus v(z) is absolutely
oontinuous on [—1, 1], Pefine |

8 (z) "ﬂ(ﬁl)Qo‘(m)+w(1)Q%(m‘ + 3 uGu(e) - (1.1.6)

Sy (@) =o(— 1)Qo‘(w)+v(1)Qo(m)+ g uQa(2). 1.1.7)

- We have the follow: ng:
Theorom 11. 1 If uC Ly(—1, 1), then :S'(m) converges unsformly to

. w(w)_-uh( 1)+J_1 u($)dt

on ["11 1]* : :
Proof. Let v(z) be expanded in Legendre series:

v(@)~ D 0,P,(2) . | - (1.1.8)

n=1

and its N-th partial sum is denoted by SN (2) -E v, P, (a:)

Usmg the identity

, (2n+1)Q.(2) ==P,.+1 () — P,_1(z)

one can easily obtain | _
Sﬂ(ﬁ)ﬂgy_i(ﬂ;) ' 21.;?“11 PH({B) + 2N+'1 .Py.l.:_(ﬂ'}) (1-1-9)

where S is defined by (1.1.%70).
(1.1.4) implies that

/n‘f——}ﬁ as n—» co,

Thus by the embedding H 1C;Ob we obtain

1 A : 2
| Iv-Sxﬂn.-w{ﬂv—qu%.Hu—-S;r [1}7=>0 as N— oo,
sinoe
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A b= = - oy R L P

H*v—SNHL.Q'H‘I_?—EE-:L"L.‘{[I 2?’ 11 |+| 2N+1 ]/n%

and Sy is the partial sum of the Legendre series of u. J
This shows that Sy is very olose o the optimal approximation to  in H —1,1):

1.2. The hierarchical elements
We will give a more- general definition for the hierarchical elements. Let Q be

a given domain in R", 4 be a mesh on 2, and &€ 4 be mesh elements. Let D be the
standard element. There are nonmlar local mappings 7', such that T',(D) =e,.

A sot of linearly independent funections {w;(P)} (I may be multiple indices)
defined on D is called a (%-hierarcheial basis, if the set of functions {0y (T7H @) )}
(e2ch is defined on one mesh element) can be used o assemble the basis for a O%
finite element space on the given mesh. The elements of such a finite element space-

are called O%-hierarchical elements.
. The hierarchical basgis is cﬂmplete if for any functmn U(P) in 0=(D) there

amsba an expansion

U(P)= EU:M(P)

The local mappings whmh can be used for constructing a bﬂﬂlﬂ Df a O’" finite element.
space will be said to be O°—compatible, and the mesh for which the O°-compatible

loeal mappings exist will be called a O°-mesh,

Aocording to the above definition the following ﬁOﬂﬂluﬂT(}n is evident:

Theorem 1.2.1. In one dimension let the standard element D be [—1, 1]. Then.
the set {Qs" (x), Qi{x), Qu(a): n=1,2, -} s & complate O°-hierarohical basis. For
any function u€ H(—1, 1) we have the following uniformly convergent expansion:

u(2) =u(~ D@ (&) +u) @) + 3uu(s) (1.2.1)

with

- 2n§—1 ﬁiuf(m)*P,,(m)dm. | o ' . (122}

Moreover, let 2=[a, ]. Then any mesh
d={a=zo< 1<+ -:immmb}
i a O°-mesh, and the local mappings | .
Ti (m) -—m;_iQﬁ ot (.‘17‘) +m¢Qﬁ (m) =ﬁ;.'3+01 EET (1 )I‘
with ;
1 1 '
S hy= 9 (20— ﬂ’i-_i) § M 9 (-’-Ui +$4-1)

are O°—compatible.
1.3. Error analysis for 1-d O° hlerarchma.l elements * :
Let P}’ (z) be the k—-th derivative of Legendre polynonna.l P (a:) The fnllowmg

orthogonality holds:

1 _ r 0, L mEan,
D (1—-2D)*P® (o) P¥ (x)da= (n+k)1 9 (1.3, 1);'
. n—%)] 2ux1+ TR . .

We define a weighted Hilbert space H,=H, (—1, 1) which haa the inner product




58 _ JOURNAL OF COMPUTATIONAL MATHEMATICS Vol. 8 |
g T Tl
: 1
@ a1~ u@)o(@)do (1.3.2)

and the norm

"“Hm_"*/('u %) one | (1.3.8)
Then 1Pt 18 an orthogonal bagis of H,..
If w**¢ H,, then one can show that the series obtained from term— —by-term

differentiation of the Legendra e:x:pa.nﬁmn (1.1.8) of u(w) converges in H,. Hence
we have

Iu"‘*_”ﬂ,.=2 E:i-f’%} 2?31_1 (e

Suppose that u(m) is axpanded in (1 2 1) and let u,(m) be its partial sum of
degree p:

u.(m)-u(--v—-l)Qa'f*'(m)+u(1)'Q%(m)4—:'Z:uuQ.(w); .’ (1.3.5)
“Then for p=k -
: - — k)| +k)
H%‘—%EL. | (p-i—k)l Eﬂ"%:—kgl 2n+1
ot )1 _Te 1% “
Lemma, 1.8.1. . %%i[—’-] y =k
| = i (pt+k)1 1 ! 5
Poof- L =gt (- )
AR, Iny<-% l”L)*; ) L]
<k S —t  _—2%(1-In2).

na1 ﬂ(2ﬂ:+1)
o _ a 2% | '
Thus y< [—2-] and the lemma follows. JJ

Using the identity | |
Qo) = — s (1- 2 Pia) R R )
‘we have for m, n>1 '
0, m e,
r (1- m’) 1Q,.(m)Q.,,(m) dm-—{ o (1.3.8)
n(n+1)(2n+1)r ™MTh

Following (1.3.6) and Lemmas 1.3.1, 1.3.2, we have
Theorem 1.8.1. ILet u™V€ H,,, p>k. Then

o~ <[] wnp.«;[;';]” ulos, (1.3.9)
w—mnhs%[gﬁ]" 9]0 <[] fulsea,  (1.3.10)

where |« |y 98 the wsual sémfz}wm-nf HYL,
. By the local mappings (1.2.7) one can easily obtain
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Theorem 1.3.2. Latﬂ==[m b} wnddb& @ given mesk. S 4? és the C’“ findite
element space based on A such that the degxrses of the elements are equal to p. Let h be the
mwmal sizé of the mesh elements. If uC H**(g, b), then there is u,© 5 4? such that

o~ “*"Mﬂ-ﬁl'g_j;] lu'lk+1-(u,l}: (1.3.11)
B o 5 T i WEREPEE o
=t e ma_-;?’j] |92 hat o (1.8.12)
Remark 1.3.1. Aﬂ gseen in (1.3 Ei“1 if uE€ 0=, 1311611 for any p>-1 -
Ju—uft,< (21)! s R ) (1.3.13)

This estimate, however, is not accurate enough for the a.na.lytm funﬁtmns
1.4. Approximation to analytie funciions. -

- The following result can be found in [10].

“ Lomma 1.4.1. Let u(z) be analytio in a domain of the complsw pkme mmfn@ng
segment [ —1, 1]. Let p be the sum of semi—awes of the mazimal ellipse which has the
fooi +1 and im which u(z) 4s regular. If H.(u) is the error of the best approzimation

by polynomials with degree <n (in L. norm), then
' hm sup[ &, (u)]“=p e (1.4.1)

It follows raad:ljr that for any ¢>>0 there exists a constant, G = (J (u; s) 511{3]1 that
 -la(-1, D<KOGTHE - (14.2)
where u, is defined in (1.3.5), | ¥ %

For some olass of analytic funotions we can obtam more acourate results In
[1] we have proved that for the function (z-+ w)® with p>>1 one can remove
the & in the estimate (1.4.2). However, there a was restrioted to be greater than -
%’-:.’-‘*Wﬁ noew:give another proof which does not require the restriction.

We need the following classical theorem:

Loemmasa 1.4.2 (Laplace asymplotic integration theory). Let ¢(=), h{®) and
f(x) =e® be defined on [a, b]. Moreover, i W ok b

(D ¢(z)[fl@)]"E€ Li(a, b) for n=0, 1, 2,

(2) h(a) assumes iis effeciive maaimum at an mm‘w poimt &€ (m b);

(3) h(z) és twice continuously dfbﬁ'&r&ntmbh at a myhborhood of £ with "' (§)<

0;
A qf:(m) is continuous ab & with B(&) £0.

Then, as n—>eo the following asympiotic formula holds:

(6@ [ @1~ O LT =y 4.3)
| THI'IE proof can be seen in [11]. The term offoctive maximum means that for any
8>0,

sup h(z)<h(£), HﬂPh(m)-fih(E)

T g f—g o=k +e

We now consider ;she coefficients of the Legendre expansions for the funotion
u(m)_= (m-i—_,cg)“, w1 (1.4.4)
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Lammg 1.4.3; Lot = 2“’;1 j ' (o) P,(w)dw. Then for 1>s>0 we have
wl <O, e (1.4.5)

with

r=f.b—~/,u..”—.1,' g<r<l-s. (1.4.6)
Proof. Since B g .

u{n-;-n (m) o (ﬂ _ 1) P (ﬂ: s ﬂ,) (m J- _:.b) n---I,
we hajre | | 8

2'ﬂr+1 LI . " {n)
w= 2L [y, v (&) 75 [(a*— 1)"] Ve ,
-1 2n+1 f1l—22 "
- <l )ﬁg o e J (o+)*" PR |t
It is easy t0 cheek that the conditions of Lamma 1.4.2 are satisfied , and the
eﬁ'eatwﬁ maximum fOI' -

h(m)mlp[ 1-—9: ]

T Lo
iBﬂ'[i a:==—-pu+-/,u —l=—4, €0, 1)
and by Lemma 1.4.2 it follows thas |
1—2% 1 —g2 qa-1 . 11— |

[ erom e 52" et BPE,
Note that as n—co, when « is not an integer we have | '

mﬁm—l) (a nl w L{n— m+i) PN =1 |

( 1) f(a}f(n+l) ~ (=1 (a)"n"s, (1.4..8)_.

Thus (1.4.5) hnlds for e<<r<<1—s (8>0). = . -
If & is a positive integer, then (1.4.5) is trivially true. If « is a negative mteger
say a= —m, then (1.4.8) becomes |

(—m)(——m 'il) (—m— ﬂ),__,(_,l)nf:tg(m)_ﬂﬁ_ )

Thus the result still holds, J |
Remark 1.4.1. It is easy to check that

~1_ it
P
Is the sum of sem’ -axes of the ellipse with fooi +1 and passing through the poini
& — )L&- . Yo - ; .
Therefore we obtain:
Theorem 1.4.1. Lot be real and u(w)= (x4 p)°, & = u=l+8, 8>0. Then

we have

=1+ -1

ﬂu’-u;,ﬂ;,,(_i,i;. 'QO(H, &)P_ﬂ‘]"p e (1.4.9)
weth r defined by (1.4.6). ]
Remark 1.4.2. For a general interval T = [, &] and the singularity £ which
is real and outside I one has (see [2])
WB gl
S Nb—g+~Ja—g
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This result can be extended to the funetion class A, which is defined as follows:
u€ A, implies that % is analytic on the complex plane except at one point £& R\ [a,
b] and for |z—¢| <R there is K =K (R) such that ]u(ﬁ)—-u(f)l'ﬁK]ﬁ —£|2. %

§ 2. C? Hierarchical Elements in Two Dimensions
(square elements)

2,1, The tensor produet gpace
Let H,(¢=1, 2) be Hilber} spaces wﬂsh inner produets (-, ) and norms [e|;
respectively.
 .The (algebraic) tensor produet space iﬂ a linear space generated by the
elements of the form | - |
a ® a’, e‘E H.., gl 2, | o (2'._1.1)
and satisfies the following properties: _i | |
(1) d®(@*+ ) =a'@a’+a' R, (4’ +b7) Ra*=a'@a*+ ' Ra’;
(ii). 6'R(aa”) = (aa") Ra" = a(a"Xa) -
where a', b'C H;(i=~1, 2), and « i8 a scalar,
The inner product on 5 is deﬁned fo be

| (e1®e’ bl@b’) (e, b*)1-(a?, 8%)s (2.1.2)
Thuﬂ the norm derived frum the inner product satisfies | S
6*®a?| = | a* (2,1.8)
The general elamente of ¥, are of the form
g= 2 o (@Ra?), kEZ* 2.1.4)

The tensor product space S is then defined as tha eumpletlon of 5#, under 'bha
above norm. And we denote

= H QO H,. - | - (2.1.5)

A basio fact for tensor produot is that if {m,.},..; are bases of H ‘ i-l 2) resp~
ectively, then e ¢ -
' @l"fﬂi; L= (“11 ‘WI) ' ga W " (2'1'6)
form a basis of the product space ¥. Especially,. if {wi}maa #0d {c3:}nwy are orthono-

rmal bases of H; and H, respectively, then {w:@wk}nm=1 18 an orthonormal basis
of 5. And, if u, v€ 5 are given by

L

- mE_Iv-...cﬂ..@w . .. 5 o _-'."(2.1.7)

v—ﬂfg; Vo, mnDwmy o S '(2-1-8)
then |

(v, ”)_"mz: uﬂnmﬂmm y | {2.1.9)

e ﬂ-n_mzﬂluﬁ.. a (2.1.10)

Let us consider a foew examples,
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1% 00 Ly ( 1, DRLy(—1, 1),

- . Sinoce the Legendre polynomials form an orthogonal basis of Ly(—1, 1), every
u€ 72 is representable by - - - ey

#(ﬂ'}, 3/)’“ iummPn(m)PM(y) (2'1'11)'

", M=

with

1 g
u“’"'_gﬂﬂi-l zﬂ?—l J-ijqu(ﬁ, y)P,,(m)P.,_(y)dm e . (2:'1-12:

A e St e gy Sew ¢ - -

on 1 ri . :

-, Tt s clear that 5" 0w I,y(D), where D=[—1, 1] x [—1, 1].
M FN (-1, BT, 1), -

In this case one can show that H1G H*(D) with continuons embedding. Howe-
ver, they are no longer equal. Tn fact the fanctions u(z, ¥) in H#L! have the
characteristics that for any fixed ¢ as a function of », u(s, y)C H *(—1, 1), and, for
fixed z, u(z, -)€ H1( -1, 1). It can be shown thay - - o

2 2 _Elu_ a ﬁauﬁﬂ gasu.l
iuﬁtﬂ""' ﬂuﬂfaafm-,"am ”I&(ﬂ)-}- _a'g_,_ L.{ﬂ)—’k amay LDy

It we lot "1 = Ly(—1, 1)@H(~1, 1), and similazly, H O HA(~1, 1)@ Ly
(—1, 1), then for u(x, ¥) €1 we have L

Gk %@? v) E'ﬁmi’ - %(‘v’ y) €5t R (2.1.14)
piw U ogwed SO O AR ] '

a;ay(w, y) € H 0= T, (D). e Bkd. . (3._1__.{1;21

- iRecall that {@5*(2), Q3(2), Qu(#); n=1, 2, -} is a basis of H'(-1, 1) (see the
16€5°(2) Q' (), Qi(2)-Q5(y), B(@) @), (@) Q 3(w); ..

Wit Gu(@) Q5N (y), Qu@)Q51(y), Q5 (2) 1@ (9); Q0 (2) @ (v)

T ~;;-,--Q,.(@)&'Q.}(y):;--.n,_;m*ql,%ﬁ,_.-ﬁi}: IR T WA P

1 Fies

15 & basis of 9Bz o f o

b

6 o i (2.1.18)

.l ," ; i P LY i ‘.. P = e H . 1 B i ')

2.2, 0° hierarchical basis on standard Sqtl&l‘é%

- We will use D 10 denote the standard: 91‘&1::1@11%‘ In two dimensions we choose
De=[—-1, 1]%x[-1, 1].

- We discuss first the properties of the -expaﬁqions of the functions in J#%1 on, the
bagis (2.1.16).

Theorem 221, 71 f ulz, ¢) E.}f_"lf,jtkm
%@, ) =u(~1, ~1D)Q @) () +ull, ~1)Qk(0) %5 (y)
+ull, DA@)QBW) +u(—1, 1)Q5*(2)Qh(y)

+ 2 0% @6 W) + 350.@ e @)
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R OUXOESSTLIOTX)

+_§]’§¢,HQ.(m)Qm(y) | ﬁ (2.2.1)
én which | ' i |
=20 j: 2 (0, ~D)P(@)dw, ; (2.2.2)
= 2L G P @, . (2.2.8)
Cn = 2‘77-';"1 J.li g;( 1r ?,!)P,,(ﬂ)dy, _: (2-2-4)“
ch .2“;" 2 f;i P (1, 4) Poly)dy, ‘ (2 2. 5)
dar 2L IMAL [ [ e OP@P @l (22.0)

Proof. 1If u(a, y) € 11, then the following identity holds:.
u(a, ) =u(—=1, —0)+| 2L (¢ —nag+ | 2L(-1, n)dy
| | & mak an, B CEN)

Since _ |
o @& D= bP@, ZE (=1, 9)=3 aP.),

| 3y (2, y) -_2_ ,,,2,, I (m) Pu(y)

a‘ubs'bltute theae expressmnﬂ in the 1dent1ty L2, 7) and notice the followmg

..._-(u(l T u(-1, __1)), %
do= g (=1, D-u(~1, -1)),
do,0== 2(1#(1 1) =u(d, 1)_1‘5(_*1'1)_1_“(_1 1y,

e o o= (), o, @

-n-'_(c’ cn)

Than (2 2.1) follﬁws easily. [

" Remark 2.2.1. Since Q.(%)Qum(¢) (n, m=>1) equals zero at the boumia.ry of D,
and Day Bl, €4, ¢, are only determined by the tangeniial derivatives along the ocorre-
sponding boundary of D, this makes the basis (2.1. 16) able to act as the O° hier-
archical basis on the square .D.

In fact, suppose that a mesh is given, the elements of which are cmrvilinear
quadrilaterals. Iet its edges be represented by para.meimzed equations (the 51dea are
numbered ag shown, in Fig. 2,2,1): e



-‘.- 1 G e ¢
ﬁl I"l .P,
Mg 2.21
D= ,(s),
" T 2.2.8
{y=yi(3)r -1<s<1, éu'-l,.F 2, 8, 4. ( )

At the vertices, we must have

7 eu(= 1) =ai(~1), 22(1) =2a(—1), 2a(1) ma(L), 2a(—1) may (L),

V(=D =pu(~1), 1:(0) =42(~ 1), 0D =ps D), ts(~ D =gu). . 2N
A local mapping 7'

{m=m(§ ' 1),
y=_:y(§, '??)
is O° compatible, if on the edges of D equations (2.2.10) are reduced fo the corre-
sponding parametrized equations (2.2.8). Becanoe of the properties mentioned in
Remark 2.2.1 the partial sum of (2.2.2) under the local mapping 7' will be conti-
nuous across the boundary of the adjacent curvilinear quadrilateral elements of
the given mesh, provided the same Polynomial degrees on the corresponding edges
of D are selected. Such a mapping was given in [4] on [0, 1] x [0, 1], For D=[—1,
1] x [—1?_1_] it should be written as | - 5
L e=a(§, ) =21 (£) Q" (n) +2a(m) Q&) +23(£) Qo)
()@ (&) -2 (- D& ()% (w) N

~ 2 (D) () —2s (D AE) () | (2.2.11)

—2s(— 1)@ (£)Qi(n),
y=y(& 1) =91(E)Q" (1) +ya(m)Q(E) +ua(E)Qi(n)

F94(n) € (€) — (- 1)QT(E) Q' (n)

—¥1 (1) Qe () () —ys (1) Qe (&) () — Efs(—'-l) Q" (£)Q(n).
Of coursge one hag to. verify that the Jacobian of the mapping is not zero. In seotion

3 we will consider two local mappings which will be used in the h—p method.
We summarize the above result: - o

. Theorem 2.2.2, In two dimensions if the standard element is the square D [ —
1, 1] X [—1, 1], then the set (2.1.18) forms & O° hierarchical basis.
Remark 2.2.2. The hierarchical basis can be classified in three groups:
(1) the vertex modes: Q7'(z)-Qr'(y), Qi(x)- Q51(y). Q=) » AU ly), @i (z)-
@5(y), which are bilenear with value 1 at one vertex and zero at the others; (2) the
odge modes: €u(2) Qi (¥), Qu(2) Q' (¥), Q5'(2)Qu(e), Q(2) Qu(y), n=1, 2, ...

‘which are polynomials on one edge and zero on the others; (8) the internal modes

(2.2.10)
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Qu (@) *Qu(y), n, m=1, 2, -+, which are zero on all edges of the square.

2.8. Error analysis for 2-D square U° hierarchical elements
Similarly to the one dimensional case, for u(w, y) € 7" we GOIl.HldEI' the partial
sum

iy, ¢ (2, y)-u( 1, -l)Qa"(m)Qsi(y)w(l —1)Q4(=)Qr* ()
+u(1, 1)Qu(m)Qo(y)+u( 1, DN (2)&(y)

+ 3 6@ W)+ S U@ W) (2.3.1)
+ 3 60 (@)Q0) + S 4 @)

+ "’2 E i, @ () Qm(¥),

where b, b, c,, Cl, dnm are defined as in (2.2,2)—(2.2.6). Then it is 2 polynomial
of degree p in » and degree ¢ in .

We have the following result:

Theorem 2.3.1. If u€ H**'(D), p=k>>1, and ey,9=tU—1Uy,y, then

I acD)

<V2[5;] [uluenn 2:3.2

1
O 3 2 ¥
Hm_ mﬁ!ﬂﬁﬂﬂ)xh(.ﬂ)ﬁ{" ;3;” % ! 3;;‘1 }

i | |
| [#lss.e : (2.3.8)

fu—ty, ol Loy = ﬂﬂrrnﬂh{m'§ ;_L, [ 2;3

 The proof is similar to the 1-d case and so is omitted.
~ BRemark 23.1. One could choose p+¢. However, the above estimaies will
then be oontrolled by the smaller one between p and ¢, unless the anisofropie
property of the given fonction is known.
'~ 'We now consider the estimates under local mappings.
Lemma 2.3.1. Leét e be a given mesh element, and D={—1, 1] X[ -1, 1] Let

m=m(§: q?),;
2.3.4
{y=y(§, 7) ( )
be a.given O°-compatible local mapping, and
U, m=uE ), vE ). . (2.3.5)
Suppose that |
: . CPRL CWRE dr 12 By ]
b~ max {J[25] (5] J[55) +[3]} (2.3.6)
0<8<[ SEZ_" 5’:%‘20. (2.3.7)
T hon |
ﬂmummymg €M | DU | zacpyx a0y (2.3.8)

ﬂu" Ly U H U H La( D)+ (2 ',3 . 9)
Proof. One has | | - o *
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(124 - [[[ 22 26 .20 20

& D

g2y

Hw, v |,
S| o

a(x, y)
o0&, n)

=%

and

Hence

GREIESAC T 2

R T RT
53 ”[%gq] =[§,?U]}d€dm

g(—ﬁg—;f%\dfamo' {[oce, mya¢ am.

The results follow readily. J.

A direct application of the above is the error estimates by O° piecewise polyno~
mials on a domain with a rectangular mesh,

Theorem 2.8.2. Let 0 be a domain which can be partitioned with a rectangular
mesh 4. Let h be the maximal length of the edges of the mesh elomenits. Suppose that the
maesh i reqular, §.6. there 48 @ constamt y>0 such thai h/hgin<<7y where Poin 48 the
minémal edge length of the elements. If u€ H**(Q) (or " (Q)NH 1(02)), then there
és a O° piscewise polynomial g, (z, y) based on 4 with degree p in both @ and y (¢f
u(w, y) vanishes on the boundary 0Q then so is uy,e(z, y¥)) such that |

k .
"m—mrr"h{ﬂ*}xhimgg[%] %] e41,0 (2.3.10)
| k+1
Hu—‘”p-rumn}'go[%] [H|n+:t,n (2.8.11).

where O is a constani whick depends only on .
Proof. Let the mesh be constructed by lines parallel to the coordinate axes. A
typical element of the mesh iy a rectangle with vertices |

| Pll(mﬂiﬂ yi)p P.ﬂ(mﬂ, 3}1), Pa(‘.’t?ﬂ, yﬂ), Pi(%p ?J:)- |
Then the local mapping is given by _-

m=-%—~(mﬂ-—m1) E"I"%(mg""mi), -
y"‘"“f(ﬂﬂ-‘yi) ']'?"I'“i‘(yﬂ"l"yl)'

' o 0o, y) (@) (ra—w) S B
Thus the Jacobian 3G ) ’ ;;47_
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And the theorem follows easily.
Remark 2.3.1. A similar technique can be used for the approximation by

polynomials of degree p (total degree in « and ) on. squa.res, And it i3 easy 130 obiain
gimilar results in the 3—dlmen310m1 cage. =
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