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Abstract

The nearly linear triangular element approximation to the stationary Stokes problem has already
been proposedt:7). This paper discusses new rectangular and quadrilateral element approximations
to the same problem, and the first order error is proved for both elements.

§ 1. Introduction

In [7] and [1], the mnearly linear tfriangular element approximation fo the
stationary Stokes problem has been proposed. The quadrilateral finite elements are
attractive for discretization of a domain of arbitrary shapes, and some quadrilateral
eloment approximations 1o the Stokes problem have been studied (c.f. [2],
[5]). In the present paper, some new quadrilateral elements approximations for
both rectangles and general quadrilaterals are discussed, and the first order error
ig obtained for the Stokes problem, in the same way as in [7].

Let us consider approximation to the Stokes problem,

find (&, p) € (Hi(Q))?x Li(Q), such that

(ST) a(u, ©) +5(v, p) =<f, v, VOE (HHQ))?, (1.1)
b(w, @) =0, Vg€ Li(Q), (1.2)

where 0 is a bounded convex polygon in plane with a boundary 92, and
a(u, v) =y (grad @, grad v), (1.8)
b(v, ¢) = — (g, div D), (1.4)

(+, +) denotes the inner product in Z?(Q), and in what follows, Hj (@), H*" (2)
denote usual Sobolev spaces with the norm [+ |m,o and seminorm |« |m,e, and

o - & v>=jn S0 dz dy, (1.5)

(@) ={g€ L(2): | qdw dy=0}. (1.6)

In eguations (1.1) and (1.2), 8= (us, u,)T denotes the velocity of fluid, p denotes
the pressure and » =const.>>0 denotes the viscosity.

Let X, (HA(Q))? and M,cCL3(Q) be two finite element spaces. Then the
discrete analogy of the problem (ST) is the following

—
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find (u;,, "E}]I;) - .X-h P Mﬁ, such that
(ST a (8, U3) — (pn, div ) ={F, Us>, VOLE X, (1.7
(Qm djv uh) == 0, VQ'LE .Mn. (1 d 8)

It is known ([3], [6]) that if the discrefe inf-sup condition holds, i.e., there exigts
B =consf. >0, such that

sup (g, div ©y) =B orloa. Vor& M, (1.9)

0rmexy |Us

then the unigue solution (&, ps)€ X»X My of the problem (ST,) satisfies the
following error estimate

jee —tls0+ [p—prlo.o<e{ inf [#—tnfso+ inf [p—gafo.o}. (1.10)

And it is also known" that if for each ¢, € M,, there exists a function v,€ X;, such
that |

(div Os—@a, ) =0, Vac M, (1.31)}
and '

|Os] .o<cfgroa, (1.12)

then the inf-sup condition (1.9) holds. Here and later ¢ and ¢; denote generic
constants independent of A.

Furthermore, condition (1.9) can be verified by consiructing an operator ry:
(H1(Q))?*—>X, such that™®

(dive—divrw, 8) =0, Vi€ M, vc(Hi(Q))* - (1.18)
(ryv|o0<c|®]|1,0, Y€ (H5(2)) (1.14)
In the case of M, I2(Q) N H(Q), X, < (HL(Q))3 condition (1.13) becomes

0==J S div{(O—ry0)dz dy = J div (U —r0) - sudawdy

HedF,

-3 (v—-a-xv)’f-vx-s,,d;r'—-;ﬂ_l [ (0—rav)™-grad mdady,  (1.15)

KedF,

where ¥ =rv|#, and vg denotes the unit outward normol vector on the boundary
8K of K.8ince mv€ X< (HI(Q)), s€ My H(2) lthen rw € (C(£2))2 € C¥(Q).
And since v€ (HL(Q))?, it can be eagily seen that © is confinuous across the element
boundary 8K of K. Summarizing the above argument, we can verify that the first
torm on the right-hand side of (1.15) vanishes. Thms, if M,cILZ(@) NH 1(!2),
X, (HI(@))2 then condition (1.18) is eguivalent o the following condition

= JI(erxv)T-grad 8 do dy=0, Vs € My, ©C (HL(Q))2 (1.16)

§ 2. Basic Notations

Let .75 (with a parameter 2>>0) be a subdivision of a convex polygon Qin plane,
and for each convex quadrilateral element K& .7, let hx=diam (K), ki be the
smallest length of the edges of K, and #° be the angles associated with the vertices
P,(1<i<4) of K (Pig. 1). We assume that .7, satisfies the following regularity
condition ([4], p. 247): There exist positive constanis o and v, such that VK € .7,




No. 2 A NEW QUADRILATERAL ELEMENT APPROXIMATION... 113

"x <o and max |cos OF| <y<1. (2.1)

hx 1<icd

Let R=[—1, 1] x [—1, 1] be the reference square with the vertices #; (1<<i<(4)
(Fig. 1). Then a mapping Fx: K—K, i.e., (, y) =Fx(£, n), is defind by

o= 3 {148 A+n)ast (1—£) (L4n)ay
+ 1= A—pz+ (1+E) (L—n)at,

(2.2)
y= {1+ A+myat 1—£) (L+n)ys
+(1—8) (l—nys+ 1 +£) L —n)yal,
where = (ﬂ?l, y;) (1@@1%4} : a,nd Fg (ﬁi) =D+
_lﬂl.
b, E 2,
K
= 0 T &
A = Ea ¥
Fig. 1
Let the Jacobian of thﬁﬁmapping Fg be
. O Oy ,
a o | 4 _
IrSim=| g oy |=7UKI+FEUMl-14D+n(l4] 14D},  (2.8)
on on ' '

where | K | denotes the area of K, and |4, | the area of the triangle 4, (1<k<4),
Then under the regularity assumption (2.1), it can be eadily seen that

Cj_h_ﬂﬁ' ‘QJK’E; Gﬂh?{; (2 .4)
For each function »(#, y) defined on K, lot (s, #) =Fx(& n),
v(®, y) =v(2(¢, n), y(& n)) =0, n), or v=v-Fr. (2.5)

Under the assumption of the regularity (2.1) and convexity of element K , wWe have
([4], p. 247) |

01]v|1,x<[0|12<cs]?|nx, Vo€ HUK), . (2.6)

and

{ Slaatdhe] 8], @

Wls,xﬁﬂi(ﬁ?{l |‘5ls.ﬁ‘+ l’;liﬁ')
For each v& H? (ﬁ ), define the bilinear interpolation operator Qi ag follows:
. 5 4 _— 0 | : _ ) . : '
Qi =3 6(B)pE, ), (2.8)

wherse
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pu(e ) =LA O Wbm), FalE m) =T A=) L+,

) 9 ) 1 (2.9)
$o(&,m) =T (1-HQ—m), s, n) = (1+8) A—n).
And for each vE H2(K), define an operator Q1. x a9 follows:
Q1,59 ='g v(p)PoFx (@ Y). (2.10)
Then .
(Qu,x2) = Gs0. ' (2.11)

By use of the estimates (2.6), (2.7) and the interpolation theory on the reference
element K, the following estimates hold: Yo& HA(K),

lv —Qu, 50} 0.5 <oy | v{1,x, |
| 2.125)
{l'v—Qn.ﬂli.x'(ﬁlﬂh-m e

and
{"ﬂ_Qigﬂ“ﬂ,E{ﬂhiﬂ'“‘ﬂnﬂ,ri | (2.12,)
lw_erKﬂlipﬁgﬁhﬂ'"ﬂﬂg,x. |

§ 3. Rectangular Element

of O and K€ 7>

Let Q be a rectangle, .7 be a regular rectangular subdivision
E—->K is defined

be a rectangular element (c.f. Fig. 2). Then the mapping Fx:
by
m=mg+ﬂ§,
| | 3.1)
and Fzl: K—K defined by
(3.2}
n=3 (=0
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And

DFg=

P 8P

) o¢ (3.3)

2
2
oy
o5 on
2
oy
—1

§’8’|

-\ oy

| T=det (DFy) = | K| /4. -
Wo consider a new rectangular element approximation to0 the problem (ST).

First, the space M,CL3j(Q) NH? (ﬂ) conmsts of the funclions ¢,€ 3,, such that

%IE“"Q’E, VKE.?H;, and

Q'E"i Q’i‘?’i(&. n) = Q1 x0x, |
[ odzdy= 3 Za) K| =0.

HedFy fml

(3.4)

Next, we congider the construction of the space X, (H3 (.QJ)’ From (1.186),
the following should be satisfied: YK € 7,

Jx(v—rgv)rﬂgra.d gx dx dy=0, Vg€ M,, (3.5)
With the following equality taken into account;
' 1 -E- o\ . L
g
grad gx =1 . 1 {( gi. ke g‘)"'(gi-gﬂ”l‘gs-gi)(n)}, (3.6)
| B g1+93— gz — G R S ¢ -
(3.5) is equivalent to that VK € o s
. % . .
.[ (©—rz)” 1 |dz dy=0%, | (3.7
X . 0 BB .
b
C J= B
@ 7
J (©—rg0)” 1 ( )da: dy=0, - (3.8
‘ o 0 = fA¢

Since Mo c XRC (00 (ﬁ) )‘, let

a O0\fey+pBig +7m)
=0 x U0+ ;
el (0 b)(ﬂﬂ+ﬁaf+')’s?? - -
where ay, B. and -y, (m---l 2) are undetermined coefficients, a.nd |
%’Té'(l £ ) (A7), (3.10)

The coeflicients o, 8, and vy, (6=1, 2) should be chosen such that (3.7) and (3.8)
hold, i.e., :
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% . + B +vm \*
o 7 A
jx(v_Qisﬂv)T 5 1 dﬂ-‘vd@!=JE ( : ? ) ©p dx 2y

< g+ B2 +7am
e oo 029
and
1
- .| @ 7 _ “1+Big+71ﬂ)r(ﬂ)a
JH(I? Vsl \ 0 1‘- (‘f)dmdy Ix(ﬁrl‘ﬁaf'f”)’ﬂﬂ £ oy
~LEL( G+ Bt df an=Sl v B, (3.12)

since the function @(¢, n) is an odd function with respech to both variables £ and 7.
From (3.11) and (8.12), the coefficients a;, B and v,(¢=1, 2) can be chosen in such
a way that 8y =vs=0,

1
=2 — =|_9[_)_ e \ T = 7 '
ﬁ 71 ﬁﬂ lKl jﬁ_ (v Ql-FU) o -:_l_b_ (g) dﬂ-"&y, (3.13)
and
aa\* 86 : 71‘- .
- — — - T
44 (mn) _lf—f .[E (v Qi,xv) 0 %_ : dx dy. (3.14)
Thus, the space X, consists of thﬁsa vector funchions 0,C X, that satisfy ©i|xz=1vns,
VK € 7,
a O . a O . '
vg=i=21 l’;ﬁ:"‘“(o b)ﬁxt}'}u"“ﬁx (0 b) (z) P, (3.15)
and for Vo€ (H*(K) N 0°(K))3,
a O a 0O
'?'1:1?=‘Q1:xv+( o b ) ax (©) Po+ Bz (V) ( 0 b )(E) Pos (3.16)

where ax(v) and Bx(v) are defined by (3.14) and (3.13) respectively.
Remark 8.1. In the case of ©€ (Hj (Q))* €15V and Q40 (Q1.40|x=Q1, V),
which are not defined, should be modified as follows: Let '

V= {0x: B=yoFx€ (Qu(K))? VE €T3} N (HHA),

Q(R) =span{p,, 1<i<4}, o (8.7)
and for any given v € (H 1(Q2))2, let w, €V be the solution of the problem
(grad w;, grad v,) = (grad v, grad vy), YU EVa, (3.18)

from which, and by the general analysis of the finite oloment method, we have

v -wy 1.u§ﬂ|1?11fm

10 — w0, 0<ch® | V| k41,0, : g | (3.19)
v - waf1,0<ch® [0 k11,0, K =0, 1. |
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Then we take th;|x instead of Q,z¥ in (3.18), (3.14) and (3.16),

From the above analyses, we have

‘Lemma 3.1. Condition (1.13) is satisfied.
Proof. The lemma can be deduced directly from (1.16), (8.5)—(3.8),(3.13),

(3.14), (3.16), and Remark 3.1,
Lemma 3.2,

|r0]1,0<e|V (1,0, YOE (HIQ)), (3.20)
| — 301, 0<ch[V]s0 VUE(HIQ) NH2(Q)) (3.21)
Proof. From (3.18), (3.14) and Remark 3.1,
|ax (©) | <chz®|v— Q1,xV]0.x,
| Bz (®) | <chi®|[v—Q1xV]o k»
from which and (3.16), (3.19),
|70 1,0= (%ﬁ |rav|1,5) < Iwh|1,a+ﬂh_lﬂt’—wnﬂn,ngﬂlv’i,a,

and
"ﬂ = 'T]l.,‘l?"]_ o5 H‘H fw;.|| a+(}h_1"ﬂ = w;.l}u o=ch ‘ v [ 2,0
Now we define an operator p: H*(Q2) N L;(Q)—>M,, as follows. For any given
g €H(Q) NL;(Q), pxg & M, is the solution of the problem
(grad pag, grad s) = (grad g, grad s), Vs € M), (3.22)

which has a unique solution, gince [+ [4,0 is norm equivalent to |+|4,0 in the space
H*{Q) N Li(Q2). From (3.22) and the general analysis of the finite element method,

lg—pergloo<ch|q|1,0, VeELI(Q)NH(Q). (3.23)
Summarizing Lemmag 3.1—3.2 and (3.23) we have
Theorem 8.1. Lei 2 be a rectangular domain, J 3 be a regular subdivision of @,
K €9, be & rectangular element, K= [—1, 1] X [—1, 1] be the reference square, and
the mapping Fz: K—K be de fined by (3.1). Assume that the solution (M, p) &
(H2(Q) NH(2))Ex (H1(Q) NL5()) of the problem (8T), and the finite element
spaces X,C(H{(Q))2 M,cLi(Q NH(Q) are defined by (3.15) and (3.4)
respoctivelyy. Then the following error estimate holds: .
e —1,0+ |p—prlo,o<ch(|#s0+ {p|i.0)- (3.24)

§ 4. Quadrilateral Element

In this section, a new quadrilateral element method for the Stokes problem (ST)

is considered by use of the notation in section 2.
As in section 3, the space M, L§{(Q) N H(Q2) consists of the functmns & M,

such fthat Q‘nlx =K, VKE..‘?_;, E]ld

gE:h-EI gi@i(fr 7?)! (‘f; ??) =FE1 (ﬂ:?, y):l | (4-1)
and |
[ pteay-% SeE-o0. 4.2)

And the space X, (H;(Q))? consists of the vector functions U;EX;., such that
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- .

U;IE=‘UK, VKG.?—@,
vx=3) v+ (DF D) axho+Brx (OF D) (oo (4-8)
$oud
(& n) =F#(, y):

where Fg is defined by (2.2),

dv  om % o
5 o\ ., L[
DFE=(@_ _3_‘_?}__)’ .DFE ==(.DFE) =(377 3-17)’ (4.4)
2 o o oy
Polg, ) == (1 — €9 (L =17 (4.5)

and Jx—=det(DFy) is denoted in (3.8).

Neoxt we define an operator ry: (H5(@))?— X, as follows. For any giveﬁ ve
(H1(Q))?, wiyEV, is defined by (3.18) associated with the general quadrilateral
subdivision of Q, T}I’II“‘I"KU, VK €T »,

rx9= g+ (DF ) "ax (V) Po+ Bx (@) (DF)7( ] ) o, 4.6)
and
px(v) =D{1EL [ (w—wn?DF (] Jiody
— | (v-wo)DF avay-| (} )fudo i, 4.7
ax (V) = l—z?’gﬁ—[{jﬂ_(v—wg) ?. DFg"dady— Bx (V) 'L (n, &) Po dz dy}, | (4.8)
where tWx=w;|x, and
Bl (, ehotaay) (| rhodoy) - (4.9)
Lemma 4.1, .
D?(_'E‘%_L) . (4.10)
Proof. By use of (2.3) and considering .
[ podody=5 (14l = 14D, 4.11)
[ 2o dwdy =5 (14al — | 4D, (4.12)
we bave “ |
1 .1 ; K|
D= golg (1K 1= L1l = [ 4D+ (] 14Dt

From (4.10), it can be seen that the mapping Fy (2.2) is invertible and ax(v),
Bg (v) are definite, ‘
Lemma 4.2. VYve (H} (@) K€D,

L(t} —rp0) TDF do dy =07, (4.13)

L(v-rxv)TDFf(Z)dwdy-ﬂ- . R
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Proof. First, it can be easily seen that

L_ Byt iy = | K| 186, (4.15)
[_@+gedady=|K1/90. (4.16)
Then from (4.7)—(4.9) and (4.6), "
| (- rx0)"DFRda dy~ | (0 10x)*DF5da dy~ ak (v) [ fodody
~Bx (0)_Gn, &) fodady— | _(v-105)"DF3* dady
- {L, (v—wx) "DFg* da dy ~ Bx (V) JE (n, §)Podz dy}

—Bx(®) [ _(n, ©)Poda dy=0".
By (4.11), (4.12),

' L(v—a-gv) *D ,}1( E

-==L(v-— wx) " DFg* ( Z)dﬂ} dy— a% () L( ; )ﬁ.,da; dy—BE(v)L (& +9°) @odzdy

'ﬂnl e Aﬂrl )
| 4] — [ 4s]

)dw dy

_J.K(v—- wK)TDFE"( z )dw dy— = | IR_ Jx(v-—w,;)fDFgldmdy(

—T"Er—l'D Br(v) =0.

The last equation can be deduced from (4.7), (4.11) and (4 12)
Lemma 4.8. Oonditéion (1.15) holds.
Proof. Ver&€M,, ve (Hi(Q))2,

.Ee j (O—rxv)¥e grad g, dody

j (v—reOY DFF*ds dy (gi il g;)}

4EE3’L{ Q’i'l"Q'E"Q'E_Qi

+%E§.U (©—rzv)*-DFg (g)dﬁ dy+ (g1—gatqa—qs) =0,

in which the last equality is a direct result from Lemma 4.2. This is condition (1.15)
The proof is thus completed. -
Lemma 4.4,

lPa0|1,0<c|®[10, YOEHi2))? (4.17)

lv-fhﬂﬂi.n€0h|lv 9,0, VOE (HIQ) N H*(£2) ), (4.18)

Proof. From (4.7), (4.8), (4.10) and taking into account the inequalities
(c.f. [4], p. 247)

sup | DFE| = |F&*|1 s ChE",

ek

sup [|[DFgl=|Fxg|1ox=chg,

Wy EX

(4.19)
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we have | |
Br (V) | <ehz?|v—ws)o,x, (4.20)
|ax(®) | <chz®|v—wa]o.x. (4.21)
Then, in the same way as in the proof of Lemma 3.2, from (4.6), the lemma can be
proved,

Finally, the operator py: H1(Q) N.L2(£2)—>M, is defined ag in (3.22) associated
with the general gunadrilateral subdivigion of Q, and we have

Lemma 4.5,

[g—caglo.0<eh|gl10, Vg€ H Q) NLIQ).. (4.22)
Summarizing Lemmag 4.3, 4.4, 4.5 we have
Theorem 4.1, Assume that the solufion of the problem (ST), (&, p) €
(H2(Q) NH{(@Q) )2 x (H () NL3(Q)), the subdivision 7 3 is regular, and the spaces
Xy (H (82))2, M, Lij(Q) N H*(Q2) are defined by (4.3) and (4.1) —(4.2) respec-
tively. Then the following error estimate holds:

| — ]2, 0+ | p— 2a] 0.0 <ch (| Us,0+ |p|1.0). (4.23)
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