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Abstract

This paper discusses the sensitivity of semisimple multiple eigenvalues and eorresponding invariant
subspaces of a complex (or real) »Xn matrix analytically dependent on soveral parameters., Some
results of this paper may be useful for investigating robust multiple cigpenvalue assignment in conirol
system design. -

§ 1. Introduction

This paper, as a continuation of [7], discusses the sensitivity of semisimple
multiple eigenvalues and corresponding invariant gubspaces of 2 complex (or real)
nXn matrix analytically dependent on several parameters. An eigenvalue of a
matrix is called semigimple if the maximal degree of the elementary divisors of this
eigenvalne is one. .'

In addition to the notation explained in[7] we use £™** for the set of complex
m X n matrices, C*=C>*, C=Cland

Crxa= { A CC™**: yank(4) =r}.

Let p= (11, pa, *+-, Dy)T €O%. Suppose that A(p) €C"™" is an analytie fanction

in sorme neighbourhood Z(p") of the point p* € C*. Without loss of generality we

may assume that the point p* is the origin of C¥. We consider in this paper the
eigenproblem

A(p)z(p) =r(p=(p), A(p)€EL, o(p) €T, pEX(0). (1.1)
First of all we investigate an example. ~ |
Ezample 1.1.
14+2p1+2ps Pa ] T *
A(p) = = Te A, 1.2
(P) [ 2ps 1ty ! T (sa.. p2)” € (1.2)

Obvinusly, the matrix A(p) is an analytic funotion of p€ C2 A(0) has a multiple
eigenvalue 1'and the eigenvalues of A(p) are
A1(p) =1+p+3pa+~PE+05,  Aa(p) =14p:+3ps— ~ P+ Pl (1.3}

Observe that by ihe theory of analytic function of one complex variable the function
~/ z for z& C is defined ag |

V7 = |z| V2% arg 2€ (— @7l

consequently, if we seot
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Alm( Tk 2]: dﬂ=(“ﬂ;r H'E]U<_2“! .‘.?F:l, (1'4)
then .
T B 6{;“;(;-)__ { 1, arg 2€ 44, (1.5)
g e —1, arg 2€ 4,. '
Utilizing (1.4) and (1.5) we get
oM () _ [ k(D) _ 1.8
3@1 )f:ﬂ‘r ll‘l‘ Ay ( 3@1 )ﬂ=ﬂi arg i< ds 2' ( ¢ )
Ori(p) _{ Ohs(p) _ 1.7
( 3@; )F=U‘s Rrg P dy ( aﬂ.')j_ )p"—'l}tﬂl‘E P1 € dy 0? ( ; )
A1 (p) Iha{p) - 1.8
( apg | )p=l}r AT facda ( 3,?32 )p=ﬂ‘r AE Pr1cds ( )
and
A1 (D) - _3542(?) —_9 1.9
( 3Pﬂ p=0; arg s £ A ( 3?3 )p:ﬂ'j arg ;€ ; ( . )
Here we define |
(2e(2)) - lm M@ O-AO0) L,
D1 p=0) arg ;1 Cdy - Lfi—[?ugat.ea ™
the partial derivatives ( 92 (p) (s, =1, 2) are defined similarly.
3?: F=0+ ATR PaCdy

The relations (1.6)-—(1.9) show that the funotions Ai(p) and As(p) are not
derivable at p=0, Besides, it is worth—while to point out that the functions A (p)
and A;(p) are continuous at p=0 but not in any neighbourhood of the branch point
p=0,

Now we set

A(p) = (AD)) pmiotres  Z(D3) = (A(D)) o000

in which A(p) is described in (1.2). It is easy to see that A(0) and A(0) have
multiple eigenvalue 1, the eigenvalues of 4(p,) are

M(p) =1+2p;, X(py) =1, - (1.10)
and the eigenvalues of 4 (p,) are | -.
il (Pﬂ) “1+2P5._, ig(?ﬁ) ="1+4P3. 3 (1 -11)
Comparing (1.10), (1.11) with (1.8) we find that
| M(py), arg pi€ 4y,
(M(P))rﬂ(m-m’ {Rﬂ(fa_), arg oy € 4y,

As (p1), arg m1 € 4y,
Ai(ps), arg p1€ 45,
As(pa), arg Pa€ 4y,
i1( Pa), arg Pa€ 4y,

(?hz(?))p—(ﬁ py)T = { ii (ps), arg Pa€ 4,
. L in(_‘?:), arg pac ds, _
where 4; and 4; are defined by (1.4). |
We note that the following facts are important: the functions %, (p1) and As(py)

(A2(2) ) =m0 = {

B L i ={
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are derivable at P4 =0, for each p, € C the set {A:(py)}i1and the set { (A (D)) poisnot ot
are just the same, A; (py) #As(py), Vo €C\ {0}, and
d 2 oA
{( ﬁég(;»ipi) ) p:—ﬂ}t-—:[ =iy & =R(( 633(1?) ) —u)' Aadd)
ﬂlmﬂarly, the functions A (ps) and A5(ps) are derivable at p,=0, for each pEE C the
sot {A+(ps) }7-1 and the set {(As(P))s=co.por}i-s aTe just the same, Xi(ps) %is(ps),
Vpa € C\ {0}, and

{( di:ﬂfn?) )m=ﬂ} :=1= 2, 4}=A(( &;g) ):I'=ﬂ ) (1.13)
Consequently, we may define o (( ag;f ) )M )and p( aé;f) )F=D) as the sensi-

tivities of the semisimple multiple eigenvalue 1 with respect to0 the parameters ™
and p, respectively. |

In the next section we shall prove that the above mentioned facts are of universal
significance, on the bagis of which we may define the sensitivities of semigimple
multiple eigenvalues dependent on several parameters, and in§ 8 give some formula.s
for e{}mputmg the sensitivities. |

§ 2. Some Results about Partial Derivatives

- Firgt we oite the following impliocit funetion theoremt.?-29,
Implicit Function Theorem. If ths complez—value functions

fj(gi‘.r "ty f!! .7}11 TRy 7?1').1 j=1?"'

are analytic functions of s+1i complex variables in some neighbourhood of the origin of
C**, if £,(0, 0) =0, jm=1, -, 8, and 6f

o( fa. - fs) S
d a(g:: é-') #:0 for §1 gﬂ*_m“ ™ Dl

then the equﬁtiﬁns

ff(gir 2l gh Ty ' 7?#) =) j=1: *t0y 8
have a unique solution '

Es=g1(m, ==, M), J=1; e=2, 8

vanighing for ¢, =-+- =%, =0 and analytic in some neighbourhood of the origin of C°.

Then, we introduce the following definition. |

Definition 2.1. Let A€ C™". A subspace Z <C" is an invariant subspace of the
matrixz A if AZ CH.

By [6], an I-dimensional subspace 2"CC" is an invariant subspace of a matrix
Ac ™ if and only if there are X, C»*" and A, €T such that the set of column.
vectors of X, spans the subspace 2 and

AX =X A, (2.1)

Moreover, the relaiion (2.1) implies A(4y) CA(4), If A4, ++, A, are the eigenvalues
of A;, we may call & the invariant subspace of 4 corresponding to the eigenvalues
St 205, K |
The following theorem is the main result of this section. |
Theorem 2.1. Let p=(p1, -, pn)TECY, and let A(p) EC™ be an analytic
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function of p in some neighbowrhood B(0) of the origin of C¥. Suppose that thers are
nonsingular matrices XY € CV" satisfying |
X == (Xir Xﬂ)r Y = (Y:l._: Yﬂ): Xy, Yiecnxr‘i

¥YTX =1 - (2.2)
and | _
AMmIC 0 TS
FTA(0>X=( ‘ ) MEAAS). 2.9)
Then

1) the eigenproblem (1.1) has r eigenvalies A1(D), <+, Ar (p), which are conténuous
at p=0 and salisfy
| ' CA0) =Ry, s=1, eee, 1 (2.4)

2) for wwﬁﬁm index §€ {1, ---, N}, there ewist r functions M), o, M (s, @
neighbourhood By of the origin and a straight line Lo from the origin o 9 findty in
the p—plane, and @ permutation x of 1, «++, r dependent on the index j, such that the
functions A (p5), -+, A(p;) are regular in fu\..‘?u, the values of {it(g%) }i_y constitute

Fa)

{(?"I(P) }!ﬂ(ﬂ: s O 40 0y -*-rﬁ]"}:=1 f{ﬂ- Ea‘ﬂh P:fe ﬂﬂ: iﬁ(?’) %xh(?f)! VPJ e '@0 \ {O} PTHW
that he,(ps) e (ps) for p;€ Bo, and

(B22) o (2 (GiR), )y 4t e @D

3) there ewists an analytic function X.:(p) €CP*" whose column vectors span the
invariant subspace of A{p) corresponding to the eigenvalues A (p), =+, A (p) in some
neighbourhood Bo B (0) of the origin, such that

Xi(O)HX;[_ . (2.6)
and
oX( - = b -1y T 3A(P) T, S
( aﬁp) )m X3 (0T — A2) Y E( -+ ),=o Xy, Gt v B @.7)
Proof. 1% Let i i __
~ r _ A1 (p) E:I.I(P)) q C Crr 2 8y
A -1 Amx-( 0 G0} 2.9
a ~ ~ |
3 P2, p) = Au(p) — 2As(p) + An( D) Z - ZXa(D) 2, @.9)
in which . .
Z=n) €Co % F(Z, p)=(fn(Z, p)) €CE. (2.10)

Observe that the function F(Z, p) is analytic for Z € C*"*" and p€ #(0),
fﬂ(or 0)':0: j=1r e, BT, | k=1, e

and

e(fii: Te fir: f §.. 2"y fﬂr; fﬂ—frij e fn-—nr)
(det 3(&11; ey Cir: Z:L; g {ﬂn gn-—r-:l.: Ty Zn-r.r>)z-;ﬂrll=0

, =det (IR A — A I RI"") = det (Aa— M 1)"#0,
where ® denotes the Kronecker product. Hence, by the Implicit Function Theorem

the equation |
- F(Z, p)=0 | (2.11)
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has & unique analytio solution Z=2Z(p) in some neighbourhood B (c7(0)) of the
origin of C* with Z (0) =0, and thus we have
' r oy*_.. .2 8y {48 Zu(p)) —
A . : 2.12)
i (Z(p) I) (P)(Z(?) I) ( 0  Aa(p) /- L
in which | -
Ay (p) = A1 (p) + Z1a (D) Z(p) €C™, As(p) =Aaa(p) —Z (P Ana(p).  (2.18)

From (2.12) | | |
| 3 ”
A(?)( ! )ﬂ( )A:.(p)- -

| | Z(p)/ \Z(p)
Oombining it with (2.8) and (2.8) and writing
Xi(p)=X g . 2.14
# (Z (p) ) | @14
we get | e o
o A(p) X1(p) = X1(p) A1(p) - (2.15)
and o
A;(0) =2 J®, X4(0)=X5. L (2.18)

2° Tt follows from a similar argument that the equation
| Z1a(p) — A (DYWTHWTA2(p) ~W A ()W =0
has a unique analytic solution W=W (p) in sonre neighbourhood #,(C%,) of the
origin of C¥ with W (0) =0, and thus we have . | |
I WpT\- I W(pT\™ . f A 0
(1 7Oz AR pu ) 017
o I 0 I An(p) A:(p) s wm w,
in which. |
| i(p)=-ﬁn(j:))+W('p)TZm(p), . ’E(P)-_"Eﬂﬂ(}?) *—.zm(P)W(P)T- (2.18)
From (2.17) - | s

( . )T}I() ¢ )( 3 )f
. Nww) VT \ww)
Combining it with (2.8) and (2.8), and writing

I
| - Ya(p) =F( W_(?)), (2.19)
we got . |
. Yi(pTA(p =4 Y(p)T (2.20)
and - |
| A,(0) =0I®, ¥3(0) =Ty, (.2

Moreover, according to the contfinuity of X J(p) and Yi(p), from (2.16), (2.21)
and YTX,=1 we know that the matrix ¥ 3(p)" Xy (p) is nonsingular Yp€ %,
provided that the neighbourhood %, is sufficiently small. In the following we shall
assume that %, is so small that -

rank (Y 1(p)*X1(p)) =r, Vp&H,. (2.22)
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8% From (2.15) and (2.22)

A1 (p) = (Y 1(p) " X1 (p)) ¥V 1(p)"A(p) X1(D), PE,. (2.28)
According to (2.2), (2.3), (2.14), (2.16), (2.19) and (2.21), the first partial
derivative of Eq. (2.23) with respect 10 p; at p=0 may be written in the Jform

04:(p) (DA o
( 2 )M =5Y1( 31::)) )r—'“ Xy, Pl e I (2.24)
Let
A(A1(P)) = {2 (D) }ic1- (2.25)
By [b] from (2.15) we know that
M(F) ER(A(P)): a"l((}) =M, 3’:11 oty (2'26)

and that the eigenvalues A;( »), -+, A, (p) are sufficienily near A; provided thai the
point p belongs 10 a sufficient small neighbourbhood 4, of the origin.

Let ¢ be an arbiirary positive number, and let § be any fixed index from 1, -,
N. By the Jordan canonical form theorem there is a matrix Q; € €:*" guch that

Q-—l(aé;(p) » Q ==dlﬂ;g(J#"" or, Jp.&ﬂ)’ (2 .27)‘
.;I '_- ;
in whlch  # g for k=1, and
(S o= di (J;?J! (T:’}) E Ly
1w % 0
* g 4.5
P = T 2 , M=1, 2=, Y, ]E"'l, *** 4. )
| 0 G
- \ )
For gimplicity we write & |
| 8y e 0
X a-A n" .l-.. I :
() a-| v g, | (2.29)
' : 5 |

where 87 = ui", -+, 8% =u{, and the subdiagonal elements & (1<l<s~—1) are equal

8 :
t0 — or zero. Since

2
~1f 0A1(p) a5
G(T52),., ¥=( @4 . (2.80)
weo have A | e
(Q7'41(2) Q) 6=0, 00,105 107 = (Bra (P5)) 1<kr1<rs (2.31)

in which the functions @ ( pf) are analytic and so may be written as convergent
power series:

O (D) =040 +64 Pp,+ B4 PG+ 04O g e,k I=1, oo, 1 (2.82).
From (2.29) and N |
| (@7 41(P) Q) p=o=ht I

it follows that 3
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3, if k=1,
Aq, if k=1, e |
P =<=— or0 if b=1-1
0, if kel ® 2 . ;
- 0, otherwise.

93 .n> = {

Therefore we have |
A+ 80D+ 040+ 04D g+, i k=1,

Ou(p) =- P+ 05T+ O3 p} + - i Emlmd, (2.33)
| or Oxlidapi + 0% i+, | "
20} + 03 pi + -, otherwise,
Let gy # O
A (1) = (A2(D2) ) p=(0: .0, 9510, 0)F | (2. 34}

and

- | ACA(2)) = {A(p) Hose | (2.35)
By (2.16),A4 is a semisimple muliiple eigenvalue of A(0); moreover, A(p;) is an
analytic function of p, in some neighbourhood 4, of the origin of €. Therefore the

eigenvalues A;(p;) of A(p,) may be expressed as the following convergent Puiseux
SEI.iEE[-!I-, . 2337, p-ﬂiﬂ]:

i’t(?}) == h'i +@P'1)P.f+2r ‘?jli{j'm} (PIH’) m, #ﬂl, *ee, T, (2 '36)
where the natural number r'<r. On the other hand, by the Gerschgorin Theorem,
from (2.27)—(2.29), (2.81) and (2.33) we know that there are precisely g circular

disks Dy, ---, D, with centers A, +uPp;, <, A+ pi’py and with radii of magnitude
-%—Ip,] +0(|ps|®), respectively. Observe that the disks Dy, -+-, D, are mutually

digjoint provided that & is sufficiently small and p; belong to a sufficient small :ﬁ],
and in such a case every disk D, contains exactly =, eigenvalues As..pr..s1(Ds), '+,
A arssers Um0 which may be written as a convergent Puiseux series

)1 , v
jq-s.+ DR Y (1) =21+ @, sy P 25 9 4'1'55:':+1r-n=-.-:-¢.‘3?’?i'Jf ’

z"l? *4ty Tay kﬂl, 4 4, Pfe"—éﬂr (2-37)’
here r,=0. From - -
| Pt rssipr— 1Pps| <5 [Bi] +O(ps17), py€ B,

t

we get
1
ot = | <5 +0(p[7) <8, 1=1, -, 1y
provided that the neighbourhood 5??0 is sufficiently small. Since & is an arbitrary
positive number, , we have | _
@;{:l:-l?"+rn-:+i=”i&”? ?‘__‘11 T b=11 "ty g (2'38)
Therefore, from (2.87); (2.88) and (2.29) we obtain

i ;
M(p) =hatd0p+ 3 g™ (p) tml, e, pES  (2.89)
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T4 is worth—-while to point out thab if the p-plane is cub by 2 guitable straight
line %, from the origin to infinity, then the functions r (D), - A (py), as the
eigenvalues of the matrix (Al(g:)),=m, s 0y P51 0r s O)Fy BT regular in o\ &, and for
any two different indexes t1.45€ {1, ++-, T} We have

() #hu(m)) D€ B\ (O} (2.40)

provided that i;,(p;)%ﬁ,,,(p;) for Py c 9, and thaf .fu ig sufficiently small (2, p.

74— 75]). Moreover, for each p; € B, the seb £3.(p) Y1 and. the set {As (0,+:-, 0, Dy
0, «-, 0)}i=1 are just the same, in which the eigenvalues A (D), =, M(p) of the

eigenproblem (1.1) are continuous at p=0 and A, (0) =2y, 8=1, **=y T»

From (2.39)
(dit(gu)) 5P gl o, 1 (2.41)
i g;=0
and from (2.20) and (2.24) we have -
oo (2A2)_Q)(ri(2), 7). e

Combining (2.41) with (2.42), we get (2.5).
4° The relations (2.15) and (2.28) show that the set of column vectors of

X 4(p) spans an invariant subspace of A(p) corresponding to the pigenvalues Ay (p),
vos, Ap(p) In some neighbourhood of the origin of CF. and X1(0) =X,. From (2.14)

and (2.15) we get

0

» _(2A(p) _ 9A:(p)

(Al AN X ( VAC) ) ( 7, )p--ﬂ Xi— X3 2, )p=0 . (2.43)
op; 77

Combining (2.48) with (2.8) we have

O
0 0 - @A(P) ™ aAi(P) |
(0 MI_AE)(.-BZ(?) ),_u =Y ( Do, )psﬂ X1 —( o )( op; )r_:u . (2.44)

op;
Since M & A(4y), it follows from (2.44) that
QZ(:P) _ _ syr [ OA(D)
( 5 ), , = Ol =497V ( ) . (2.4B)

Substituting (2.46) into

Ty

2X 5}5’@ ):i=u - ¥ ﬂ(_@%ﬁ)_)’ﬂ

we obtain the relations (2.7). g

§ 3. Applications

3 1. Sensitivity of Semisimple Multiple Eigenvalues

According to Theorein 2.1 we may introduce the following definition.

Definition 3.1. Let p=(ps, - o) T ECY, and let A(p) €T be an analytio
function of p in some nesghbourhood Z(p") of the point p*€CY. Suppose that there
are nonsingular matrices X, Y € TV satisfying g | "
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T e v M

YT.X-=I, X=(X1, Xﬂ), F-_'—(Yi, Yﬂ), XI, Y;{EC“K'. (31)
and ' "
ALY 0 -
_ Y-"'A((})X=( : P ) MmE A(4s).
s
Then the quantety -
- rf{ 0A(p) '
85, (A1) P(y 1( P )p=0 X 1) (3.2)

és oalled the sensitivity of the semisimple multiple eigenvalue Ay with respect to the
parameter p;; the quaniuty

300401 D4 (M) = »\/ éﬁj@ (3 .3)

is called the sensitivity of the semisimple eigenvalue Ay with respect to the parameters
:pfl" Ty pﬁu;

() =y 235, (3.4)

is called the sensitivity of the semisimple multiple eigenvalue Ay.
Ezample 3.1. The matrix A(p) of Example 1.1 has a semisimple multiple

eigenvalue Ay=1 at p=0¢& L3 By Definition 3.1 we have
85, (A1) =2, 8y, (M) =4, 3 (M) =2~/5.

3.2. Determination of Sensitive Elements

Let A= (az) € C™", Assume that there are nonsingular matrices X, Yy ¢ Qe
satisfying condition (3.1) and
o IO 0 _
( : )r ME}-(-A-H) a

Aq

We regard the elements ay as parameters. By Definition 3.1 the sensitivity of the
gsemisimple multiple eigenvalue Ay with respect to ap i3

sen () = (¥ 52— X ), § k=1, (3.5)
i 1
Let Xq=| 2 |, Y11= | 2 mrh ygecr V.?'
o 7 _
From (3.D0) we get |
8an (M) =p (W) = |¢ff |, 4 k=1, =, m. (3.6)

.

Moreover, by Definition 3.1 the sensitivity of the semisimple multiple eigenvalue
A with respect to A is

84 () =J 35 |ufekl® Neeeievebal 3.7)

8.8. Measures of Robustness in Control System Design
A closed loop linear system with coefficient matrix M & R™" is said fo be ‘robusi

if its eigenvalues are as ingensitive to perturbations in M as possible *
Assume thai there are X € R3™" and

d=diag (agI™, oo, A L7 ER™®,  Aj#F N for j# & (3.8)
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e r—————

such that
Lot

Mo AT, (3.9)
X = (mir il ﬂ?,.) - (X:L! Ty Xt) 2 Y=X"= (yi: ey yﬂ) s (Y:h"'r YE)-' (310)
7 g iy L

Then the relation (3.9) may be rewritten as

YTMX =A. (3.11)
By Definition 3.1 we may define
v, = :gl 83 (As) (3.12)
a8 & measure of robustness of M, From (3.7) and (3.10)—(3.12) we get
i s/ g i (VIY,XTX,). (3.18)
Remark 3.1. If the matrix X in (8.10) satisfies X].X,;=1I"" V4, then
| po= Y ||l p (3.14)

which coincides with &/ »3(Z), here »3(I) is a measure of robusiness introduced in

[3].
Remark 3.2. For the vectors #1, ++-, @ and gy, *++, ¢, described in (3.10), we

set
e;=l|@slslesla Vi, e=(e, -, cw) " ER" (3.15)
The formula (3.13) shows that if max n;=1 then |
Vy= "GH;; (3.16)

on the other hand, if Tax n>1, then from (3.13) we can deduce

1
¢ snyEerdng-rbng HyFebnig g z
=T Jaltlui 3" olzla))

I==m

q g+t 0y
“;,\/;(ﬁ; > c? )Q max ~ny. |¢|a (8.17)
g | R T oo P

l<fa<gqg
Hence, in the case of multiple eigenvalues we may nse the quantity lefs (or [els/
~/ 7, see [6]) as a measure of robustness in control system design.
Remark 8.8. From (8.7) we see that for the matrix M described in 3.3 and
for an arbitrary j (1<j<gq) we bave

: su(M) =~ (Y 7Y, XTX;) <ngy, (3.18)
where .
€) =M0AX oy byl (3.19)
v fe a2 g

Usually we nse n,) as a condition number of the semisimple multiple eigenvalue A,

(see [8, Chapter 3, § 2]).
Ezample 8.2, Suppose that the matrices X, ¥ and A4 in (8.11) are as

follows: |
| 0.883992 —0.503560 | —1.129710
x| 0.468608 0.127883 | 0.856507 |=(Xi! XJ),

0.114293 0.361696 0.221624
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0.426276 0.096469 | —0.594922
Y =] 1.317480 —0.496596 1.261380 |=(¥1] Y a),
0.053581 1.290580 | —0.588375
A=disg(—0.2, —0.2, —10.0) =diag(As, Az, As).
By (8.7) and (3.13) we have
su(A) = IV TV XTX,) =2.04982,
8u(Ag) =Y 2IY  XIX,=1.78933 a

and

v, = N85 (A1) +5% (Ag) =2.72093.
On the other hand, by (3.156) we have
=1.89456, cy—1.39478, cg=1.78934
and

"ﬂ"ﬂ=2 .66307-
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