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Abstract

This is the second half of the article. The rate of converganca for the A—p version with goometrie
meshes is discussed.

§ 3. C%-compatible Local Mappings and Geometric Meshes

In this section we discuss two C%-compatible local mappings and the geometric
meshes which utilize these mappings.

3.1. The Bilinear Mapping

The simplest mapping which maps the standard element D=[—1, 1] %
[—1, 1] to an arbitrary quadrilateral element ¥ is the bilinear mapping

{ z=a;§ + bim+ciém+da,
Y = aaf + ban+Cabm+da.

Suppose the vertices of the quadrilaterals £ and D are numbered counter-
clockwise ag shown in Fig. 3.1.1:

(3.1.1)

Py(—1,1) By(1,1)
P-I(I-t.y-l) P:.frs,yg} [

I

—f
Plfil!yl) Sl

£(x,,y,) Pi{—1,~1) P;(1,-1)

Fig. 38.1.1

Then we have

ﬂi=%-(*'m1 g 1?3 ﬂ?4), ﬂn=—1-(—y1+y2+3/3"2}4),

bi=%(—'$1“=ﬂn* ws+Ta), bﬂ=%—(“‘§1“yﬂ+y3+%):

* Received Beptomber 16, 1936.
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01=*i—($1“—ﬁ5+¢3‘“m4), cﬁi—(m—yri-ys—yg),

d1_—"—4:j:-(ﬂ?1+ﬂ?3+m3+ﬂ?4)} dg=%‘(g1+yﬂ+y3+y4). (3.1-2)

The Jacobian of this mapping is

3(:1: .Ef) . |
2 R +B +0’ ] 3:1-3
a(&, ) i ( )
where |
| e
A= e =%‘(SIEB_SW4):
| tta Cgq
c1 by 1
B-— = B —Baa)
eo bg 4 ( 134 12‘})
@ by 1
0= = &
o bﬂ 4 1284

in which S is the area of the iriangle P PPy, and 853, is the area of the
quadrilateral K=P,P,P,P,, -

It is easy to show that the Jacobian evaluated at each vertex P, of D equals half
the area of the triangle which is determined by the corresponding vertex P, of E
with its two adjacent vertices, Thus we have (see (2.3.7) in [1])

O?=max gg?: ig =-%—Iﬂﬂ£{lgm, Ssa.;, !S‘a.ﬂ, Sm}, | (3.1.4)
3”=min g%;: 3{3 7= % 'ﬂ(fg;ua, lgﬂm, Smi, Siﬂé.}- (315)

The only bilinear mapping with a constant Jacobian is' the one which maps D
to a parallelogram. In this case the mapping is

{ﬂF = a1 + bin-+-dy,

3.1.6
Y = @s§ + ban+d, : ‘

with

The simplest case that the mapping maps D to a rectangle was discussed in Theorem
2.3.2 (see [1]), |

It ig easy to show that the bilinear mapping on arbitrary quadrilateral meshes
given by (3.1.1) is C°—compatible. |

~ 8.2. The Polar Mapping |

Using polar coordinates we can transform the polar net in (#, ¥)~plane to the
rectangular net in (r, #3—plane, then a linear mapping transforms the elements to
the standard square. It is clear that this mapping is C°-compatible.

The local mapping is the composition of the following:
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a‘=l—(¢=—-~r1)§—l—l(rg+n),
{“"“"“"”r { . . (3.2.1)
y = 8in ; ag_é_(aﬂ._gi),] 4+ _15(92_1_91)_
P(—-1,1) P,(1,1)
- rv——— e — D
Fl(—ll—l‘) Fﬂ(lr_l)
Fig. 3.2.1
The Jacobian is
oz, ¥y) _ Ta—7T1 Go— 0y [ro—T1 g TatT
¥ T A i DR [fog e e+ D508 (32,8
G=—1——(Tﬂ-'0’1) (92"—81)"?’2,.- | .
(3.2.8)

&g = -1— (fﬂ"”!’:l.) (95_ 81) *T1.

3.3. The Geometric Meshes
' We are interested in the finite element approximation 0 the functions which
have singularities at the versices of cornered domains, For simplicity we assume the
domain Q= [0, 1] % [0, 11, and the function wu(z, ¥) has an o—¥ype gingularity ab the
vertex (0, 0), which can be expressed in the polar coordinates:

u(z, y) =ulr, ) =r*g(d), (3.3.1)

where ¢(#) is analytic in & with |g(8) | <K.

I+ should be pointed out that the gingularity at a vertex of the solution for an
elliptic problem on 2 cornered domain is related
with the measure of the angle at the corner.
Nevertheless, the idea can be applied 1o any

angles.
We will discuss two kinds of geometric
meshes,
The first kind is related with the bilinear
T : mapping as shown by Fig. &.8:1:
g 8.3 I.et the elements be numbered as in the

ficnre. The elements having the same sizes are
said to be in one level, the number of levels is denoted by m=m(4). The levels
are numbered from larger elements t0 smaller ones. Therefore the square {, ak the
corner of (0, 0) has the size ™. Tn our mesh the ¢—th level has iwo trapezoids £;
and Q2. The typical elemeut £ has the following vertices:
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Py1(c*, 0), Pi(c* %, 0), Py(c*t, o %), P(d', o). (3.3.2)
By Bection 8.1, the corresponding mapping for this element ig

o=FU-o)orifg+1Ea]
3 : an
y=gA=0)o £+ 150 (L +y).
Thus the Jacobian of the mapping is
3(@, )_1 - i-1713 |1+
2(E i)"_ﬁ[(l o) ot [f. 1_:]. - (3.3.4)
And
1 _ - o, y) 1 .. g
Z—u'(l o) [0 1] D ﬂ)ﬁ-‘—i—(l a)[at ¥ 2 (3.3.5)
(G +3] =[=2T tat aemm<iia-o)o1ps, (3.3.6
P [y _[A—a)e™ P, 14a]? 1.
o) e [T (e 2] < g vl
Moreover, function (3.3.1) boecomes
i -1 a o
UG =[R2 e+ 122 e+ crnafam,  (33.9)
where

G(n) =g [ﬂfﬂt&ﬂ -g—]=g [arctan -:—L-'—;'ﬂ:l

which is analytic (with two isolated singularities at —142¢),
By Lemma 2.3.1 (see [1]) we obtain

uDu ” Ls{ QP X Ly (8%) ani (ﬂ-) " DUU La{ DY X Ly( D)) (3 3. 9)
| %) £yop <O2(0) | U] rpy, (3.3.10)

where

2(L—a) 1
Ci1(o) =max [~/ (ﬂ_ ), m],
Oy (o) =-§1; v1-g,

Note that C';, 0, only depend on .

The second kind of geometric mesh is
related with the polar mapping (a8 shown by
Fig 8.3.2). For gimplicity we assume that the

domain Q is a sector of degree i

2
The elements are arranged in levels with

similar numbering as before. The number of
levels is denoted by m=m(d4). The typical
element &} is related with the local mapping
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¢ o =__l_ - i—1 | 1"|"(T
{m=rcosﬁ, {"' gii—ele [5 1—::*]" 6.5.113
3 = sin & =__(1+,?)
Thus the Jacobian of the mapping is
O, y) _ 140
2z ) = [(1—0)o" 1]*[5 = G_] (3.3.12)
And
-i%-u-(l—cr)[a"‘i]’ﬁ%%—ygé (1—0) [c*2]%, (3.3.18)
ox oy (1—o)o*™?
2T 4[] -[4=ge 530
2rP  [0y7 [(A—a)o 2 P[wl, 1+c P o o .
['é?;‘] +[5%J -[S=F—]|§l¢ '_1-—0‘]] Y@ 4 A5
Moreover, funciion (3.3.1) becomes
(1—g)ot 17 140
U, m=[L=De 2 e i o), (3.3.16)
where
' o
¢ =g [ F@+D ]
which is analytie.
Again by Lemma 2.3.1 we obtain
| D] 2opx 2o < C1(0) | DU | L pyxzumys (3.3.17)
|4} 200 KCO3(0) <&* U} ey (3.3.18).

where (3, (s only depend on c.

§ 4. The A-—p Version and Its Error Analysis

The convergence of the finite element method is obtained by increaging the.
number of degrees of freedom of the finite element space. There are three basic
versions for the finite element method: the A~version, which only refines the mesh,
the p~version, which fixes the mesh while increasing the degrees of elements, and
the k—p version which refines the megh and increases the degrees of elements
concurrently. .

The A—p version has been proven t0 have an exponential rate of convergence
for a certain class' of solutions (see [2], [8]). Here we will use the hierarchical
elements with the local mappings to show this rate, but give a more detailed
analysis, We will answer the questions about the optimal ratio for the geometric
meshes and the best degree distributions,

4.1. Variable Degrees on 2-D Mesh Klements

If we use the C? hierarchical basis on the square (see Section 2, [1]}) with local
mappings to construct the 2-D (° hierarchical elements (on a curvilinear
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o

quadrilateral mesh), it is easy to see that the continmity on the common edges of
adjacent mesh—elements can be obtained by choosing corresponding edge modes of
the same degrees.

We discuss now the effects when different degrees of the modes are used. For
simplicity, we assume that on one edge of the standard square I) its degree is p—1,
where p is the degree of the other edges and the internal modes. For example, we
let the edge with lower degree be n= —1,

Denote the partial sum for the expansion of u(g, n) by (£, n). Using the
notation in Section 2.3 (see [1]) we then have

u'a(g:r 7?) =u!:'-i'(§: ??) _"b;P—IQIJ—-l (5) QEI (7}) (4'1'1)
with by 2L [ 24— 1P, (), '
Thus

Ju—1 ]y < fu—uy,, | oy + [ 8p-1Q9-1 (&) Q5 (1) || 2acmy
1 %, .
-"“""%rﬂ"hl’ﬂ} } = 9 1 1 lbﬂ——ilg
{3 -3~ ) oz }
2 3

1D (=) | 2or < 1D w4, ) Lincort- =} 1B,
3e-3)

| Dy (=10} | 240y < | D, (e — s, QHL:(DJ | {4( B 3)( . 1)(_“_1'5‘}%1511—1"

3 g \PT 5

By these estimates one can show that there are no essential changes in the rate of
convergence if only a few terms are adjusted on the edgeg,
4.2. Some Auxiliary Results

We now consider the error estimates for the following functions:

U@ =[e+32Z]", (4.2.1)
Vin)=(4 (7}+1)”]%“g (arctan-"%i— d (4.2.2)

where g(2) is analytic. '
Lemma 42.1. For e<o<1—e, >0, we have

L

HUF_U;”L:{—IJJ‘:;O(“: E)P*u’fﬁ 3 (4-2-3)
HU—U::"L‘(—MJ<O(H=: e) P'“"i@'" (4-2-4)
with
1— o
o T 4.2,
¥ 14 o ( 2

Prooy. It follows from (1.4.9) by setting 1 = ij;‘ in (1.4.6) (see [1]).

Lemma 4.22. For s>0, 7,=0.2168---, there is a constant C=C(e, ¢, ¢) such
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that |
WV —V ol et <0 (ro+8)%, (4.2.6)
HV_V:!”L:{—L:UQO?_:L{%-{- 8)°, (4.2.7)

Proof. Note that V' () is analytic with isolated singularities ab z=—1x2.
The ellipse with foci +1 and passing through the gingularifies has a half major

") 1
axis a=«/2 +1=2.4142... and a half minor axis b= (242 +2)%2=2,1973.--. Thus
p=a-b=4.6115-- and (4.2.6) follows from Lemma 1.4.1 (see [1]) with ro=p *==
0.2168453354:--. |} -

- The pext lemma is concerned with the approximation to the function which is
of the form U(z)V (v).

Lemma 428, If u(z, v)=U@V @ with U, V& H*(—1, 1), then the
polynomial 4, (2, ¥) defined in (2.3.1) is of the form

g, ¢ (&, ) =Uﬂ(m)'vﬂ(y>: (4.2.8)
where U,(z) and V,(y) are the 1—D partial sums defined by (1.3.5) (see [1]).
Moreover, we have

HD’M_D%.qﬂL.{mxmm '

<|V|-|U'=Us| + UL V'Vl
+ V| jT =T, + U [V =Vl
V=V U =U3| +[U—=Ts] - [V' =Vl (4.2.9)
Lt gl < [V [+ [T =Ty + MU= |V =V ol + [T —Usl - [V =Vl (4.2.10)

where | | on the right—hand sides siands for the morm of La(—1, 1Y,

Proof. These relations follow from straight forward calculations. )

4.3. The h~p Version using the Geometric Mesh of the First Kind

We now give the error analysis for the solution of the form »*g(f#) when using
the geometric mesh of first kind shown by Fig. 3.3.1. Let C be a generic constant
which ig independent of some quantities known eagily by the context. Let u, be the
mapped function; on each specified element Qf it is obtained by the corresponding
Jocal mapping from & polynomial uy, g,,(&, M =Us,,(£) V., (n). Denote e=u—"t,.

As mentioned in 4.1, we can adjnst the degrees on the edges to ensure the O°
continuity. This will not affect the order of convergence in terms of the total
number of degrees of freedom. Therefore, in the following we will simply eonsider
different degrees on the elements.

First, the total error is denoied by

E(N)*=|De|Lqmxrs0y

!

m 2
- 12 2
S Dﬁ] Lo( Q) % Lal D) +‘§1 ;Fgl“ Dﬂﬂb,{ﬂ{)!h{%l
m 2
B+ 3318, PR
= m]

On 2, we use & very i'ough estimate which will not change the order, lt is easy
to see
2u ’ﬂl -
= <Ur?,
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Thus
EQOE J.:ma'ﬂ“'ﬂdmdyﬁOa'ﬂ“’". (4.3.2)
. From (3.3.8), (3.3.9), Lemmasg 4.2.1, 4.2.2 and 4.2.8, it follows that
By, 1(2is, ¢u) <O (8) [r%+ (1rg— g) % gad-m (4.3.8)
; 1—«/c
th >0, = =0.2168...,
with 8>>0, o 1+\/-;-,rn 0 8

From (4.3.1), (4.3.2) and (4.3.8) we see first that the degrees on the same
level should be equal:
Pu=Pu=p, ¢n=qr=q,.

If we choose varied degrees on different levels, the best choice is to let (for
simplicity we write », instead of (ro—g)):

q‘i’i i a.gi ey ﬂ.n(m—i-l-i).

Thus
_aelnoe . .
b= 1114?‘ (m 1'+1.).I
_alno .,
9 In 7 s

The number of degrees of freedom is

N 208 (Ing)? md
Inr-lnsry, 8 °

Therefore

1 ~+ -
E(N) 'QC‘ﬁgﬂmggﬁ;ﬁ&—[y'"f'lﬂr-llnr.,] B>

As proved by R. DeVore and K. Scherer in [4], the function In++In ¢ as a funection

of ¢ has a unique maximum st o=(~ 2 —1)2=0.1715..-, If we lot ¢ take thig
value, then

Pi=2a+ (m—i+1),
¢:=1.1832a+ (m—i+1),

F (N) << (g2 055988109~ )(sum-},g g~ (1597245008~ —¢ )(nm'i'_

| If we choose the same p and ¢ on different levels (p may differ from ¢), then we
will have -

E(N)2€O(s) [02*™ 4 920 1 (ro—8) %],
In this case the best choice is

P pl =",

Thus
_alngo
B Ty
G alno

- ]Il‘?'n
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The number of degrees of freedom is

Inrelnr,

Therefore

-
E(N)Qoﬂ'“mﬁaﬂ”[% lar-locs|tar,] ¥ (aN) :

11 we take the best choice of o= (~/ 2 —1)#=0,1715.-, then
p=2xm,
g=1.15632a m,
E(N) < Qg (1-058938160-~—e)(aNyT
If we let the degrees be uniform on all elements and g =p, then we will have
B(N)*<O(e) [0 4 rB 4+ (ro— ) @],
In this case the begt choice is

Thus r=1ry; this gives

o= L—wg ‘]’ = /T ~1=0,4142185622. .,

m=0,5766am.

To
The number of degrees of freedom is

o (1]1 'Tu)ﬂ s

Therefore

B(N)<Co™m O Lz 2eirtars] h“”’*.

Hence

B (N) < (o= 1-009796220-—2)aN)¥

These results are summarized in the following theorem:

Theorem 4.38.1. Let the solution u{w, y) take the form r*g(8) with g (8}
analyiic. Suppose Q=[0, 11 % [0, 1] is the domain of the problem. Then the fi—p version
which utilizes the geometric mesh of the first kind (Fig. 3.3.1) with ratio o and the
number of levels, m, and which adopts the bilinear mepping (Section 3.1) to construoct
O° hierarchical elements, gives an exponential raie of convergence

BiWyatia, 4 b8 T (4.3.4)
where E(N) is the error in energy norm for the finite element approzimation with N as
the number of degrees of freedom, e>>0. The constant y>>0 depends on the choice of the
mesh and degrees of elements:

1° If varied degrees are allowed, the degrees should be arranged in the following
way: the clements in the same level ¢ have the same degree p, (the radial direction) and
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¢: (the crossing direciion) which are linearly decreasing down o the origin. T'he best
choioe then i3

g=0.1715---,
Pr=sp0is (M—1), 8$p=2,
gi=sm* (m—4), 8§,=1.15632+:-,
In this case
p=]1.B5272-,

2° If the degrees are arranged uniformly on all levels, but p+ g i3 allowed, then the
best choice is
o=0.1715:-.,
P=8yxem, Sp=2,
g=30m, S8g=1.1532--,
In this case
v=1.0089:--,

3° If the degrees are arranged uniformly on all levels with p=g, then the best
chotce @8

o=0.4142...,
p=sa+m, 8=0.5766--,

In this case

y=1.0097---.

4.4. The h-p Version using the Geometric Mesh of the Second Kind

Recall that the geometric mesh of the second kind is given by Fig. 3.3.2 on
the sectorial domain O0<<r<1, 0<<f<w/2. We will apply the corresponding notations
as used in the last gection. .

To be specific, we let u(r, 0)=s*cos(af) («>>0). The singularities of the
solutions on cornered domains usually have this form. On the standard elemeni we
have now (see (3.3.16)):

U, m =12 e 122 a() (4.4.1)

i =

with G () =c08 [385(1?—1—1)].

Lemma 441, For G(n) defined in (4.4.1) we have

~ dp+2 [ @it
Cp+1)11 [E] i

[ — G| <<
Proof. By (1.3.13) we have

|6/~ <o |, A=)? [[oos = 4 0) |7 am

1 w22 2. (2p) 1| 2(2p+1) or 29T
<~ pi 5] Cpr DI “[Cp+tD 17T 5

(4.4.2)
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il

Remark 4.4,1, By Stirling’s formula we have as pP—>00

Viap+2 (w1t w [B]  (4.4.3
(2p+1) 11 [8] 4~/ 2p [p] (4.4.8)
with
= 5173 — =rg
"_-iﬁ" 0.5337 »
Thus we have a simpler estimates
P
uG'—G;nmﬁo[_g] . (4.4.40)

A little different treatment is that there are two sectors (5 and Q2 where linear
interpolation will be used to construct the approximate function. The corresponding
errors are denoted by Ey; and Hy,; resp. Thus the total error ig

m 2
E@)*~33 51, (4.4.5)
On Qf we still have
Bu<Oo*™ 4=1, 2, (4.4.6)
From (4.4.1), (3.3.17), (4.4.4), Lemmas 4.2.1 and 4.2.83 it follows that
B,y (pu, qu) <C [9"’" + [—‘§-] MJ gReD (4.4.7)
43

1—o
T, B=0.5387-..

From (4.4.5), (4.4.6) and (4.4.7) we can also let the degrees on the same
level be equal:

with 5=

Du=Pu=0, qu=qu=q;.
If we choose varied degrees on different levels, then the best choice is

P == [_5;_]"“ — g m—i+1) (4.4.8)
Thus
4= ﬂllliif- (m—i+1),

o

Write Q‘i=By and @= B Ing™ (m—i+1); then (4.4.8) gives 8*=9¥, Thus

. _ In(lny)1_ =
Y Inz [1+ In y :] lnm(1+a(1))

as z— oo, Therefore

i i =11
gi=alno ln(m—-i+1)(1+a(1))

a3 m—»oo, The number of degrees of freedom is

W 22°(In )3  m?

—lny 8lnm*

Therefore
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e, T L =a s

o —Inr 3NInN
20° (In ¢°)? 3
e

i
—[% lar-lac|* [BaXN-To N1*

B

i
BN <OV mo*"<C(NInN) ¥q
Again for o= (s~ 2 —1)2=0.1715... we will achieve the hest rate of convergence, In

this case
pi=20 (m—14+1),
” . m—i+1
gi~1.7627ﬂs ],I].(m—‘i.—l—l)j

B ( N) o (g~ (0-8873817184 - —¢)(8uN + 10 Nyr

If we choose the same p and ¢ on different levels (p may differs from g), then
we will have

B(N)*<0 [o*™ 5%+ [-g-]ﬂ“?.

-

Let
_ T8I . _am
r”-—[-—g] a
Then
=_»::n:lnu:::r,m
Inr
and

g=alng™ fm (1+0(1)), m->oco0,

‘ 1
The number of degrees of freedom is

26%°(Ing)?* m®

N~ —~Iner Inm’
Therefore
3 —Inr NInN
m> ~ —s 5
262 (Ino)? 8 =
—~Flinrsine J"- =1n +
E(N)<CgomecQg L8 mrine] - mmt
If we take the best choice of o, i.e. o= (~/2 —1)?=0.171H-s,

p=20+m,

o~ s
g~1.7627a =

E(N) -g03—0-1131331754_.@3;_1“1”_!.-

At last, if we let the dégrees be uniform on all elements and g=p, then we will
have '
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“—_— — T —— —

ap
B(NY'<0 [gtom 1424 [—g—} I
Bince [g]’P diminishes with higher order than ¢? does, it can be neglected. In this
case the best choice is
¥ = g™,
Thus
P —Ellxilrﬂ;

The number of degrees of freedom is

_2°(Ing)?
N (Inq_)i*—m.

Therefore

X
1

1 s
E(N)QOG‘“"‘QG%—[Elmﬂ'mr] ] ¥ tan '

Since function [Ino|-(lnr)?(0<o<1) has a unique maximnm a
o =0,b717172496.-.,

it yields
P=3x-p
with
$=0.2832108839:--
and

E(N) < Qg1-02998008(a ﬂ-_

These results are summarized in the following theorem: .
Theorem 4.4.1. If the solution u(®, ¥) 8 of the form r*cos(afd) and ¢f 3=

[0<r<1] X[OQB-Q;’-] 28 the domain of the problem, then the h—p version, which

utilizes the geometrio mesh of the second kind (Fig. 8.3.2) with ratio o and the
number of levels, m, and adopts the polar mapping (Section 3.2) fo construct O°%-
hierarchical elements, gives an exponential rate o f convergence.

Let B (N) be the error im energy norm for the finite element approzimation with
N as the number of degrees of freedom.

1° If varied degrees are allowed, the degrees should be arranged in the following
way: the elements in the same level § have the same degree i (the radial direction) and
. (the orossimg dérection) which are limearly decreasing to the origin. The best choice
¢8

0 =0.1715:+.,
Di=Spois (Mm—2+1), s,=2,

gi=s;a ln"’(“m“‘j:j Ty, %=1.762T--,

In this case we havs
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o

E(N) qgﬂ-—mﬂmﬂmﬂ-lnm{ (4.4.9)

2° If the degrees are arranged uniformly on all levels, but it is allowed $hai pwg,
then the best chowce 43

o=0.1715--.,
P=sﬂa'mr E:F=21

g=5, ]n””m =1.7627
In thas case
E(N) <(g~0-6573aX In N}-’:— (4.4.10)

3° If the degrees are arranged umi fwmly on all levels with p=q, then the best
ehoice s

o=0.6717--.,
D=8p* M, 8p==0.2832...,
In this case

B (N) <Qg™1-038%aX)v (4.4.11)

Remark 4.4.2. As seen above, when choosing variable degrees one can
achieve a rate of convergence higher than exp (—y</ alV ). In fact if u(r, @) =r®,
then the rate of convergence can be exp(—y~/ aN ) since degree ¢ could be
bounded. In all the cases the best choice of ¢ is independent of «, the strength of
the singularity.
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