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Abstract

Symplectic geometry plays a very important role in the research and development of Hamilton
mecharics, which has been attracting increasing interest{114]. Consequently, the study of the numerical
methods with symplectic nature becomes a necessity.

Peng Kang introduced in [5] the concept of symplectic scheme of the Hamilton equation, and
used the generating function methods to construct the symplectic scheme with arbitrarily precise
order in the finite dimensional case, which can be applied to the ordinary differential equation, such
as the two body problem[l). He also widened the traditional concept of generating funetion.

The authors in this paper use the method in the infinite dimensional case following [6], that is,
using generating function methods to construct the difference scheme of arbitrary order of accuracy
for partial differential equations whick can be written as Hamilton system in the Banach space.

First, the Hamilton equation of infinito dimensions is briefly reviewed. Then, we introduce
symplectic manifold and symploctic structure in the Banach space. Thirdly, Hamilton vector field
and its flow are discussed. Fourthly, we put forward the generating fonctional and symplectic
difference scheme. Fifthly, the application of this result in various Banach spaces, such as Toda latiice
equation, wave equation, compressible flow squation and electromagnetic flow equation, is described.

§ 1. An Infinite Dimensional Hamilton Equation

Suppose B is a reflexive Banach space and B* its dual space. #£* is an KEuclidean
space and n il dimension. The generalized coordinate in the Banach space is
function g(r, #): E"xR—>R, Vi€ R. We have ¢q(r, £)EB. B corresponds to the
configuration space. We introduce p(r, #), the generalized moment, where »C BE",
i€ R. For Vi€ R, P(r, t) € B". Bx.B" constitutes a phase space.

Let H be an energy function in Hamilton mechanics, We have the Hamilton
equation in B x B*™

dp _ _8H
57 (p, g t),

adi |
(1
ﬁg_” BH (P! g! t)'
v ; Op

Let 7 be a mapping: Bx B*>B x B*. We call T the canonical transformation, if
in D BxB* where D is an open set, we have

JPdQ—JPdQ=dS(p, g, 1), (2)

P | |
where ( 0 ) =T (P) and § is a function in B X B*, which has Frecht derivative in D,
' q
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Let
h " |
K(P! Q! t) EH+%+J P %‘?" dﬂ’fﬂ!ﬂ'}*ﬂ’sq}' (3)
Considering (2), we have
jpdg—Hdt=JPdQ—Kdt+dS. (4)
In the new variable, the Hamilion equation has the form:
; 3K
T ®
Q-IK
3P °
Suppose the moment P can be represented in ¢ and @, The functional S, =
O(g, Plg, Q, ¢), t) is called generating functional, when ab:agé is nonsingular,
From (4), we have
S
? _SESI(Q’ Q, i)
P==2 8i(q, Q 9). (6)
aQ L »

Ecamgple. Let Si(g, Q) “"L. ¢+Qd,. Then
~ 135

s G =@,
— 88,
y 50 g,

K (P, Q, t)=H(Q: =gl t)'

There are other kinds of generating functional: Ss(p, Q, £, S, (¢, P, ) and
S«(p, P, t). For convenience, we give a list below:

G-F . Nonsingular condition New variable
h—*—“*-_._“—_
- p*%(q, @, )
81 (QJ Q.r t) WI 0
¢ P -L‘ﬂ (q, &, t)

- 5Q
= 084

Y ; Q'= ¥ Q! #)
%, @, 0 om0 -
» Pm— (2, Q1)
—————_m__-.—_—-“_-_ Y. oy —
' p=258 4 a 5
Si(a, P, #) i -
8q3P 9=S52 (4 P, 5
oF
T —— —— ____-___-___'——'_"—'——-————-——_ - ik
. _ 38,
338‘ g _al'p_ (pr -P.r t)
Sl (P: P.I' t) W*O biTed
Q=—2(p, P, 1)

. .
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Generating functional S plays & key role and its more general form will be

given below.

The infinite dimensional Hamilton-Jacobi equaiion can be written as

L2 o g, t)=0. (7)

at 8q
if S

The functional S(g, #) is unknown, and is called the firgt integral of (7Y,

2
satisfies (7), and 83 ég g is nonsingular, where @{r) is an arbitrary function.

From the Jacobi theorem, we know +hat if the first integral of (7) is solved,

then the solution of (1) can be obtained from

oy
e i !'t'i
p=57 8 & ¥)

where P(r) and Q(-r)‘ are functions in K",

§ 2. Symplectic Manifold and Its Structure

Tet B be a reflexive Banach space. &: Bx B— R is a continuous bilinear

mapping. - |

Define g’ B— B,
g*(e) - f=2(e, J)-

MThen £ is a linear mapping. We say & 18 woakly
injection. We call & nondegenerate, if &” is a bijection.
Lot P be the manifold modelled on B. o is a 2-form on P, such that:

a) w is closed: dw=0,
b) V€ P, we 7 PxT,P—>R i nondegenerate,

We call (P, w) the symplectio manifold and o the symplectic form.
Let (P, w) be symplectic. For VzEP;

Theorem 1 (Darboux, Weinstein )™,

there 4s @ local coordinate of @ under which o 98 @ consiani.
Suppose that M is modelled on B. T*M is its cotangent bundle. 7" T"M—> M is

g natural projection. 8 is the canonical 1-form on 7™M defined by:
8 (o) W = —aim* (T7* (W),

where a,&TtM and WE T..(T"M).
In the local chart U< B, we have
8z, )~ (e, B) = — (&, @)+ (@, &) = —ale)
in which (@, &) €U X B*, (e, 8) € Bx B". '
The canonical 2-form w 18 defined by: w
w(z, o) [ (e, o), (€3, ag)] = {ag(e1) — 1 (€2)}s
For such w, we have |
Theorem 3. 2a) o 48 the weuk symplectic form on P=T"M -
b) w s symplectse iff B s reflexive.
Proof. See [4]. |
Let (P, w) be a sympl

nondegenerate, if s* is an

—=df. In 1bcal chari:

ectic manifold a smooth mapping P-—>P ig called
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S i Xk - B - : 35 - .. i -

canonical or symplectic if -
fw=ow,
8§ 3. The Hamilton Vector Field and the Hamilton System

Let (P, w) be a symplectic manifold. H: P— R is a given smooth function.
¢: TP—T"F is the diffeomorphism induced from w:

(@) a=w(w, «),
where z, a ET P.
¢ 'dH is called the Hamilton veotor field with energy E' If ¢"'dH ig denoted
by X gy, then X g ig defined by

we( Xg(z), V) =dH .V,
where s P, VET,P, ie. ix w=dH,

Theorem 8. Let c(2) be the integral curve of Xg. Then H (c¢(8)) 43 constant for
any t. |
"~ Proof. From the chain law, we have

__ H(e(d))=dHy(t)¢' (1) =w,(3) (X ul(t), Xa(t))=0.

In the general case, suppose that M is modelled on B, P=7T"M and H is a
smooth function on P. Then, locally .

. Xg=(D;H, ~DH)
in which H maps from U x B* to B. So D,H (2, «): B*>RE B*=B- D, HC B*.
If we denote the element of 7P by (2, ), then in the local chart, Xz can be.

. OH dH
writien as (ﬁ’ ST )- |
The Hamilton system has the form
dZ
9 _ xa(2).

Theorem 4. Suppose (P, w) 48 symplectic. H: P—R. Lot F, bo the ﬂow of
Xu. Then for any i, F; ¢8 symplec_ic. |

Fio=ow.
Proof.

% Frw=FLoos=F (@i +iud) 0= H(3) + F'i, do>=0.

If we define the operator J as
h J: BxB'->(BxB"Y*=B"xB,
J(#, a)=(—a 0),
then it is easy o prove that JEGL ((Bx B"), (Bx B"").

J=(O —-IB.), J_l_( 0 IB)-
Iy, O I ©

Iz: B~—> B identity operator,
Ig.: B*-> B* identity operator,
We write them briefly as I.
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Then the Hamilton System has the forra
aZ __ 7-1
| d# Ex,
where Hy=(D:H, D, H).
Canonical 2-form: |
w (o1, aa) =<Jay, a,

where in the local chart at P=T"M. a;, as€ B X B*, and {, > is a dual product.

Because the Hamilton Sysftem in the local chart of the manifold bhas the same
form as in the phase space, in the subsequent sections we disouss only B x B* and use
the theorems in the symplectic manifold, if we regard BxB" as a sympleciio
manifold with natoral symplectic structure.

§ 4. Generating Functional and Difference Schemes

Suppose f: Bx B*—{(Bx B")",
W=5(W).

We call f a gradient transformation, or potential operator, if there is ¢: BxB*
—> B such that

W=¢W(W)‘
Let g: BXB*— Bx B" be a canonical trangiormalion
Z—>45=g(2),
TCGL((BxB*)x(BxB"), (BxB")"x (BxB")),
(2 2
¢ D)
in which A, BEGL(BxB*, (BxB"Y"C, DEGL(BxB", BxB"),
Let W =AZ+BZ,
W =CZ+DZ.
Then
(7 )2 ()
Z I

Lemma 1 ™, If the following condittons are satésfied:
1. F is an operator: B— B,
2. F has Qateaus differentiation DF(z, k) in D: |z —z0| <,
3. functional (DF(z, hy), ha) 98 continuous in D,
then F i3 @ potential operator iff (DF (@, hy), hy) 48 symmetric for any e € D+
| (DF (@, hy), ka) =(DF(w, k), hy), Yhy, he€ H.

Because Z = g(Z) is symplectio, we get
I ° ON £Z:.\ [ Zs
<<o* —-J)'( I ) ( I )>’°"

h J O L ] L]
2 :
where | =~ _ ] is a mapping
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(BxB*) X (Bx B")—>(BxB*")*x (Bx B*)".
If W= f(W) is a gradient transformation, from Lemma 1, we get

0 I\ /Ww\ (W
(=2 o) ()7 Do
-~ 0 I i
For the condition of I, we have
Theorem B, T carries every symplectic Iramsformation imio & gradient

transformaiion, ¢f:
0 I J 0
T* T=
(—-I 0) '”’(0 —J)

i.e., Ay= —p 0%, By=p N A",
Oy=u T 24" Dy=—p tJ 1B,

A B Ay By
o= =l b
! (o oy T (oi B

Proof. From Lemma 1, we only need fo prove that if Z = §(2) is sympleotic,
then Wy is symmetrio.

-(( 2 §>("i;)’ (‘*;“')>Z
=<(_01 i)T(Iz)Z“” T(;)'Z“’>

for the nonexceptional condition that Zy is nonsingular, if

(3 o)mx(o _3)
(3 NZ) ()0
(3 o) (5 p-e

As a matter of fact, the condifion is necessary and sufficient.

Theorem 6. Suppose T satisfies the conditéon of the above theorem. Z=9(Z) is
& canonical tramsformation and CZp+D is nonsingular. Then there 4s a gradient
transformation WoW = F(W) and functional ¢ (W) suoh that f(W)=cdw(W).

Proof. This is obvious from Theorem 5 because f is symmetric. So, from
Lemma 1, there is ¢ (W) such that

f(W) =¢W(W) -

¢ (W) is called generating functional. For the H dependent on 4, we have
Theorem 7. Lot T be defined as above. Z—>Z=g(Z, 1) is @ oanonical

transformation. Z (t) is phase flow.
M(Z ) =g.(Z, 3).

implies
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1) g(», 0) és @ linear canonical transformation, M (Z, 0) =M, i independent of

z?
2) ¢ i(x, 0)g(x, %) és @ canonical transformation dependeni on &, and carries

Z(t) tnto Z(0), - |

8) 0Z4(0)+ D is nonsingular.
Then there are a gradient tramsformation dependent on i: Wo>W=FfW, t) and @
generating functional ¢(W, ) for sufficiently small |¢|. Such that

(1) W_f(w 1) 1% ~42+p2,w=cB+DZ=0, '

(2) (W, t) =pH(O1pw (W, ) +DiW) | w=02+D2,

(2) 43 a general Hamilton—J acobi equation. "
Proof. Denote (Z, 1) by Z, (W, t)byW. Similarly we have Z and . ﬁ-( H)'
Then: e |

IME D B
i-(5 1) 5=(o 1)

o2 2) 50 )

where

Asg in Theorem 5, it is sufficient to show that %—L(%L%)- is symmetric and
Wy DgH
s m (75 o
(W, 1 | —- = ]
| 0 I J 0
Via direct calculation and by use of the equation 7™ 7 o T - o —J/
we gel
oW
S
So there is a ¢ (W, #) such thai
W) 5
H) 3W, 9"

8o H(O.pw(W, t) + DWW, &) = (W, £).
Depending on ¢(W, t), we can get general sympleotic difference schemes.
Theorem 8. Let H be a analytical funciton. Then ¢(W, 1) can be ewpmmd
as @ series of . For sufficiently small [t|, the serdes is convergent.

bW, §) = SV (W)HP,
#,m:-(W,; t) = -%- W*Ww(OW, Wy (0) = (AZ z(0) +B) (qz_z_ (0) + D)2

D (W) =uB (BW), Bo=(02:(0)+D)7, k>1.
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oy gy & 3 (B Qi) O

IG;;?I:[

Proof. We substitute ¢(W, t) = ;,i‘iqu (th" into

Cﬁ't == j.bH (Oi¢w+ D1W, t) v

Comparing the coefficient of £, we ges the representation easily.
We can select several form of T'.

[1]
-7 0 0 O
o 0 0 -I
T = :
o I 0o 0
o 0 I 0

M == '—1, MQ=I-
CM,+ D is nonsingular,

w=(3) 7-(25)

P ]
b=¢(p, ¢, 1)-

The Hamilton-Jacobi equation: ¢;= —H (g, —dq).

[11] ,
wsof J
5L 3
ﬁb=1, MU=I,

OM,+ D is nonsingular,

W—-2—<P“P), W — (9 Q)
qdTg p—pP
Denote ($+p)/2 by b, (7+¢)/2 by ¢-

Then, the Hamilton-Jacobi Bqua:hlon is

bi=H (5 u q+—qsﬁ)

Remark 1. If B is & Hllbert space B=B', we have more generating
functionals such as -

[1L1] .
‘ -1 0 0 O
0o 0 I 0
7 =
0 I 0 oOF
0 0 0 I

OM,+ D is nonsingular, .
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v-(o) 7-(7)
g Y4

The generating functional is ¢=¢(g, ¢, £); correspondingly the Hamilton-
Jacobi equation is

¢’f = — 0 (';bﬂr g) -
§ 5 Applications

1. When we Wke B=R", ¢~(gs, *, ¢ ER", p=(py, -, 1) € (R")*=R",
equation (1) becomes the canonical Hamilion equation. Becanse R® is a Hilbert
space, Irom Remark 1, all 4he conclusions of the finite dimensional case can be
regarded as a special case of what is in Hilbert space.

2. Toda Lattice

(0 @) = (Puy Ga), H=ver—F, oo, [k, vos,
Its 2-form is Q=3 dp, Adg,.
The Hamilton function has the form

H=2 B+ [exp(ga=gos) - 1—gatgodls

Let

p={2}, g={aq}.
Then p€ E™, ¢€ E”. We write the equation as

it =11,
ap _
-

in which A¢g€ E™. (Ag).=exp(g.—¢a1) —0Xp(gus1—a.).

Thig equation is introduced by Toda as the model of lattice of interesting
osoillators™. Because E* is a Hilbert space, generating functionals [T], [II] and
(I1I] can be taken. If we take [II], the second order accuracy scheme is

| gn - +'_'(Pn+?'+1)r

i Pu"l'i Pl+ At’A ('qll__I__ n+:[)
3. Wave equation. Let
B=H P=HlyxH™,

In H*x H?, a subspace of P, we have the Hamilton functionals
H(p, §)= |, =+ (4)*+m*$%} + F{g}da,

IEH=‘?31.M,
Xa($, §)=(¢, dp—m*¢—F'($)).
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‘8o, setting u=c) and v#¢ we have

dv _ _8H
a7 o’
du _ 3H
dt ou

For B being the reflexive Banach space, we choose

(J —o
(2, 1)
3L 31

briefly for m=0 and F=constant. We construct a difference scheme which is of
fourth order accuraoy. |

; 5 % AR 27° o_ . ” ASRE S A
PR AR Y] I-HE( > 314 JEH g5 (J1Hzp) J 1 H, ("‘"‘“‘2—"—):

(Ol 3
0 A0 e A0

If we take 4 as the fourth—order centered difference approximation we get

Z““=Z"+rBZ—-§- B3Z,

where
2 o)
B= ,
I 0
- 80 16 -1 0 0 I
i6 —30 16 -1 0
1
Mogom|-1. 16 -30 16 -1 ;
-1 168 -30 16 '—1]
» Zn+1 Zn
E—-—-—ﬁ——..
v is the time step length, % ig the space step length, M is an nxn matrix, I is the
nXn unit mairix n=-2k£+1.

This scheme has been computed on the computer, and the result is Very
satisfactory. Its detail will be discussed in another paper [7].
4. For compressible flow.

H =0+ (aVu+pVh)?/2p,
where (p, ¢) (o, i) is conjugate variable,
G = — p),.
For flow field: ¥=AVu— V¢, A, u are vortex labels. The equation has the form
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e e e e T n—

2 __oH
ot 7 2
op __eH
i do ’
op_ 8H
ot OJo’
oo _ oH
ot ow
oH
Denote p=(p, o), ¢= (¢ ﬁ).Wehavaﬁ—(?)=J‘1 _33} L,
R %\ 2H
og

We choose the generating functional of first kind with second-order accuracy.
Then -

pPHi=p" v H (g, 9,

gn+1+1fﬂ 3 -‘+1XH+TH;:(?-+11 n+1,a"ﬂ) .
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