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Abstract

In this paper, & new finite eloment scheme for Navier-Stokes equations is proposed, in which thres
different partitions (in the two dimensional case) are used to congtruet finite element -subspaces of the
velocity field and the pressure. The error estimate of the finite elemant approximation ia given. The
precision of this new scheme has the same order as the scheme @/ Py (biquadratic rectangular element

for the velocity field, and constant rectangular elemeni for the pressure), but it is more economical
than the scheme Q,/7,.

§ 1. Introduction

»
In this paper we oconsider the boundary value problem of Navier-Stokes
equations

2 |
_ u = :

vAn —I—E U 2, grad A=f, in Q, (1.1)

divee=0, in Q, | (1.2)

=0, on 84, (1.8)

where QCR? is a bounded domain with a Lipschilz continuous boundary é42,
€= (11, ug) is the velooity, A is the pressure, ¥ i€ a positive constant which standsg
for the coefficient of kinematie viscosity, and f=(f,-fy) is given.

Let W=2(Q2) denote the Sobolev space on @ with norm |- lm,¢.0. AS usnal, when
g=2, W™2(Q) is denoted by H™(R) with norm |+ w0, and W*2(Q) is denotad by
12(£2). Moreover, lot H}(Q) = {u€ H*(Q), u=0 on o082y, X =(H}(2))? with norm

eiz=|+|1.0 and M={3.GL”(0), Lﬁ.dwnﬁ} with norm [e«[y=1{¢«lo,0- Then the

boundary value problem (1.1)-—(1.8) is equivaleni to the following variational
problem:

Find (&, .) € X x M, such that

g8, ¥) ta (u; &, ©)+5(v, M) =(f, v), VPEX, (1.4)
b(u, Ju’>=0: Vue M, (15)
where
2
ao(tt, 0)=» 3 | 2:; gz: da, (1.6)
; - 5 3’1& _ 3’!}‘;
e %, ) ?i.gi'[ﬂ w’(@:}: . oy u.)dm, (1.7)
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b(w, ?h)——-_J.nﬁ.diV v de, (1.8)
(L.

J, v ﬂi fuog das.
i=y J O

Tor the low Reynold’s number, the variational problem (1.4)—(1.5) can be

reduced to the Stokes problem:
Find (#, A) € X x M, such that

a(w, v) +o(v, &) =(f, v), YvEX, (1.4)*
b(u, ) =0, VueM. (1.5)
Suppose X, and M, are two finite element subspaces of X and M. Consider the
finite eclement approximation of (1.4)—(1.5) and (1.4)*—(1.5) respectively:
Find (8, M) € X3 X M,, such that
o Uy, ) +a1 (s, By, Un) +0 (s, An) = () v), VU, X, (1 .10)
by, pn) =0, Ypa€ My, (1.11)
and
Find (&, Ay) © X3 %X M, such that |
s ap(tly, U) +0 (0 M) =(F, Us), YOREXH (1.10)*

' b(uh: th) =D, V.u'heMb- , - (1.11)

The question we shall discuss is how o choose the finite slement subspaces X, and
M,, such that the error estimate of the finite element approximation {tt,, My 18
opiimal. We know that if X, and M, are the optimal choice, then X, and M, should
satisfy the following conditions™~%;

(a) The errors inf |#—o,]x and inf |A— ] x have the samse order in &, where

unc X, : UAa e M,
(s, A) is the solution of (1.4)*—(1.5) or (1.4)—(1.D).
(b) There exists a constant 8 independent of A, such thab

sup {00 50) > gyl Vin € Ma. a2

vsE X H‘t’h L‘x

Condition (1.12) is called Babuika—Brezzi condition.

In the case Q is a rectangle, the domain £ can be divided into some smaller
rectangles. We ghall denote by .7 this partition, and set Py for the gpace of all
polynomials of degree <k in the variables @i, @ and @, for the space of all
polvnomials of degree <% with respect to each of the two variables %3, #a. J. T. Oden
and O. Jacquotte™ lisied different choices of the subspaces X, and M, which satisfy
the Babuika—Brezzi condition. For example, the Q,/FPp, Scheme (biquadratio
rectangular element for the velocity field #, and constant rectangular element for
the pressure ) is one of their choices. But in this scheme the error estimate of the
finite element approximation (e, An) 18 |#—th)x+ |A—M{x=0Ck) only, even
though they use the biquadratic rectangular element for velocity field #£. So it is
interest to find a “one order precision scheme” with an optimal error estimate. O. A.
Karakaskiap™ presented a scheme in which two different triangulations .7 4 and
. are used for approximating # and A (linear triangmlar element for & and
constant triangular element for A to form subspaces X, and M,). He proved that if
h/h is sufficiently small, subspaces X and M, satisfy the Babuika—Brezzi condition
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£, So——

and the opiimal error estimate is given. But in practical application we do not know
how to judge whether A/A is sufficiently small. For the rectangular element, J. T.
Oden and O. Jacquotte™ showed how |

u A

to construet two partitions 7 5 and
7% such that (a), (b) hold. Their
idea is as follows. Suppose .7, is a

given regular partition consisting of L
rectangles. For each reotangle K €.75, Fig. 1

conneoct the mid-points of the opposite sides of K; then each rectangle K is divided
into four smaller rectangles. Let .7 ; denote this new partition and nuse 7 & and T,
to form subspaces X, and M, respectively (bilinear rectangular element for # and
constant rectangular element for A). This scheme is denoted by 4¢Q,/P, and shown
in Flig. 1.

- We know that the scheme 4@,/ P, satisfies the Babuska—Brezzi condition and the
opiimal error estimate (one order precision) is given. But if we compare scheme
46,/ Py with scheme Q,/P,, we see that both schemes have one order precision and
their resulting stiffness matrices have the same order and the same zero elements,
Therefore we could not say which one is better even though the optimal error
estimate is gtven for scheme 4Q,/P,.

In this paper, we present a new schemse in which three different partitions are
used for approximating u,, uy and A respectively. The optimal error estimate of this
new scheme will be given. We will demonstrate that this new scheme is much
more economical than scheme s/ Py and scheme 49,/ P,.

§ 2. Stokes Equations

In thig section we only consider the Stokes problem (1.4) *—(1.5). Suppose 7,
is a given regular partition of the rectangular domain 2 and Q= L] K, where h=

. He¥,

max {fx} and Ax denotes the length of the longest side of K as shown in Fig. 2.

R Es,

. B
. LT Oy Qe ¥
1
-] a3
z
Fig. 2 ‘ Fig. 3

Now we introduce two new partitions. For each rectangular element K €.7,,
oonnect the mid—points of the opposite sides paralleling ay—axis; then element K is

divided into two smaller rectangles K,; and K., Therefore we obtain & new

partition denoted by 75, and —g-ghikih. Similarly, for each rectangnlar element

K €.7,, connect the mid-points of the opposite sides paralleling s.—axig; then K is
divided into two smaller rectangles K4, and K g,. Hence we obtain another partition

denoted by T, with 2 <hy<h.
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Using the partitions 75,, 7, and 3, we congtruct subspaces X, and M,. Let
M;-{MIMIKGPG(K), VE €7, and L - dm==0},

S;{,={w,,€0(ﬁ) o3| 5, €EQ1(K 1), VK1 €T, and vy]0=0},
S%a={wﬁ€0(ﬁ) W]‘ E.EQJ.(KE): VK:]E:;?_]" &ﬂd E}I’ ?ﬂ=0}1
Xﬁ.'—'S%,XS%..

Now we consider the discrete problem:
PFind (u;” ?'-h) = X}; K Mﬁ, such that

o (uh: vh) +b (1?;,, l'h) = (-f: ’U;,) » V'vll & Xh (2 : 1)"
b(ts, ) =0, V€M, (2.2)
This scheme is denoted by 2Q./P,. In order to analyze the stability and convergence-

of scheme 2Q,/P, we iniroduce operators II;, II, and II as follows. For each.
v, € H3(Q), the following variational problem hag a unique solution

(Vask, Van) = (Vvy, V2s), VaESL. (2.8)

In faok, wl is the projeotion of vy from H3(Q) to 83,. Define II;v, € 81 satisfying that.
on each element K £.7;,

(II09) (@) =wi(a), l1<i<d4,
{J’[ ](HI”J*“”i)ds’ﬂ: where [a;, @;] = [a@a, as] OF [ay, a1].

(2.4)

Obviously, I;v; is uniquely determined by v;. So we obtain operator IIy:
HI(Q)—>8L,. Similarly, we define operator IIy: Hj3(Q)—>85, as follows. For every:
v, € H(8), Hgvy € S3, satisfies that on each element K € .7,

{(Hﬂﬂl) (ﬂi) '="HJ§ (ﬂl) » 1"*:'3"%4:

=3 2&5 F
.[ i , Hlavs v9)ds =0, where [a;, a;] = [a1, as] or [as, adl, e
[ P |

where 4?2 is the projection of vy from Hj(Q) to 83,.
For every v= (v, 23) € X, we define
H‘v-'ﬁ (Hiﬂip ﬂg"ﬂg) G.X-n.
It is olear that II is an operator from X to X,. Furthermore we have
Lemma 2.1. The operator II is bounded, namely there ezists a positive constant’
O, independent of hy, ha and h such thai
[IIv|x<CiQvlz, YVOEX (2.6)
and
b(v— v, uy) =0, YOE&X, V&M, (2.7)
Proof. For each v= (3, 93) € X, let wy, w} denote the projections of »; and o,
from HL(Q) to S, and 8%,. Moreover, let Iv=0,= (v}, vi), Wi= (wi, wi), €=
Uy— W, and e =0— W, = (61, ﬂg). Then we have
* I”nli,rﬂ'g]wnl:t.n |9h 1,4-

Hence, we only need to estimate [€3}1,0 in order fo get inequality (2.6). By
e, = (vi—wl, vi—wi) = (e, ¢}) on each element K €75, we know that
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{s% (@) =0, 1<i<4,

1]ds=0, wh a - 2.8
J [66.a4] [es—e : ere [a;, a;] = [as, as] or [a,, ai]. (2.8)
From (2-8)5; we have

1 J &1 04,
21 Iatly [ [Z1.28]

1
Lﬂi ﬂ == J & d@' -
( ‘ﬂ) 2 I 104 | [9:.G4]) e

On the subelement K i; (see Fig. 3), we obtain

Er{ (ﬁ) =& (ﬂﬂa) Pas (ﬂ?) -+ Bi (ﬂﬂ) Paa (ﬂ’) 5 VaC K 11y (2 . 10)

where pgs (@), pu(2) EQ1(K 11), Poa{@s) = P23(@s) = Pes(Gis1) =0, Daz(@as) =1 and pg (as)
=041 (Gy) = D43 (@33) =0, Ps1(Gs3) =1. From (2.9), we have

[ 65 ("-’323) =

=1

(2.9)

1
|63 (ass) | <-C-feslo,x <O (h?les] 2.+ |61]2.0)7,
hi (2.11)
1
| ek (Gay) | ";O(hE,HEIHE.E+ les[1,8) 2.

Combining (2.10) and (2.11), we obtain

|
|€i ] 1, £ < | €3 (@as) | | Pas 1m0+ |64 (Gar) | |Pa1 ]2, £ SO RE? a5, 2+ |61 [ 1,2) %
Similarly, we have

1
Iﬂﬂ:t.zu<0(hiilﬂ1ﬁﬁ.x+ lﬂ:[ I 1x)Z.

Henoe,
|1, e <O(hg*|e]d, z + lesli ),
6| 1o <O (A fes}d.0+ |es|0)- (2.12)
By the Aubin-Nitsohe technique, we know that | -
Iﬂiﬁ,a“&fghﬂlﬁiﬁ.n- | (2.13)

Combining (2.12) and (2.18), we get

ler].0<Ole1]1,0<0]1]1,0-
Similarly, we can obtain the following inequality for ej:
le3]1,0<C|%a|1.0.
Therefore,
len] x<O|v]x,
and inequality (2.6) follows immediately.

Finally, equality (2.7) follows direotly from the definition of operator II.
Lemma 2.2. There exists a constant 8>>0, independent of h, suoh that

sup 200 ) > gl Vi€ M.
et X, [|v,,||x
Proof. For each u, € M,, there exists a € X, such that™
dive=—u, and Hvﬂxlﬁﬂuﬂmﬂy, o0,

Hence
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6(“’&} ﬂ’h)_ b(ﬂv: ﬂ’h) b(v, ;u'h-)= “..-u'huﬂ 1 ”v“
e (wlx Mol (olx Mvlxo O; THvlx

The proof is completed with 8= 010
o1

Lemma 23. Thers emsts ¢ constant U, dndependent of h, u, A\, such that
Inf Ju—oi|x<|u— Tuly<Oilulso, Yu€X N (H(Q)),

inf |A—pin]u<<Oah|A|1,0, VACMNH(Q).

L TESE Y

Tha Proot of ¥his Yemma can be Yound in 15)].

An application of Theorem 1.1 in Chapter II of [1] yeilds the follnwmg eTTOr
egiimate.

Theorem 2.1. The d@wmta problem (2.1)—(2.2) has a unique solution (u,., Ju;}
€ Xy X M, and the following error estimate holds

Eu“uhnx+n?h—?hhuy‘<0h{lﬂ ﬂ,ﬂ‘l“ !?u]i,ﬂ}, (2.14)
where (8, ) is the solution of problem (1.4)*—(1.5) and

wC X N (H(Q))?, AEMNHNQ).

The error estjmate (2.14) shows that schemes 2Q,/P,, 40Q,/P, and Q./P, have
the same order of accuracy in A, but scheme 2@, /P, is much more economical than
schemes, 4/ Pe and Qg/ F,.

Bemark. In the case Q is a general polygon domain £ can be divided into
some iriangles and some rectangles. On the triangular elements we use scheme

Pi/Py and on the rectangular elements we siill us> scheme 2Q,/P, to construct
subspaces X, and M,.

]

§ 3. Navier—Stbkes Equati'ona

Consider the finite element approximation of the nonlinear variational problem
(1.4)—(1.5).

Find (ﬂj, ?4-1.) - Xi -4 Mih sach that

to(th, Th) +a1(th; th, 1) +b(0y, A,) = f , ), YD EX,, (3.1)
bW, tn) =0, Vu,€M,, (3.2)
where subspaces X, and M, are given in the last section. Let
N= sup 2 (wi_ %, V)
wvweX [8]1,0[0]1,0]W]1,0"

th Sﬂp ‘Gi(wh: ul’u vh)]
ta Va WA I ] i, J 1,0 1 Uz x 1,0 I W, I 110

. Obviously, the following inequalities hold

Ni<N and |[Fli<IfI®. - (3.3)
For the problem (3.1)—(8.2), we have
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Ao

Theorem 3.1. Problem (3.1)—(8.2) has at least one solution (8, Ay) € X3 % My,
which is unique Lf the following condition holds
N h”f I‘;:/Pﬂ{ 1.

The proof is omitted here; it is basically the same as in the continuous problem

(see Theorems 1.2, 1.3, 1.4 in Chapter IV of [1]).
Theorem 8.2. Suppose

NIf[*/v2<1—38, (3.4)
d is a constant, 0<d<1. Then problem (8.1)—(8.2) has a unique mlu#m (2, M) E
E;xM; and

fe2— "ﬁ“zﬁc{ﬂﬂ Hﬂ||.1z+ lﬂf ”5’*' 1oy ) 2 F suP

|G (u; Hu, Wn)|}, (3.5)

wi€ X3 “whu
H?«.—hl}uﬁﬁ{ I]u Hﬂ“z‘l— inf ".?'.-‘—)Uth e S'I].’E ,G(u II“ wn)l
HnC My, WwiE III '
|G (1; tt, W) | } |
+1§E R |t ] x : . i

whera
G(u; v, w) —a;(4; u, w) —a:(V; v, 1),

Proof. -B; inequalities (3.3), we know that
Nl F 3/ <N[f|"/»2<1—8.
From Theorem 3.1 we see that problem (8.1)—(8.2) has a unique solution
{ﬂ;_, ?u};,} E XXM, Tﬂkjﬂg Ur=8; In (3 .1)', we obtain

Go(Up, Uy) = (f: ).
Hence, we get

- Hﬂnﬂx‘g. l({u:}?) I‘Q ”f"' (3.7)
Let
zZyv=th—1lu,

8=ao(Us, 25) + a1 (U s, 23) —ao(lIn, 22) —~a.(ITu; On, 2,).
Then we have - |
8=ao(2x, 2») +a1(2Zy; th, Z») +a . (I14; 2, 2))
=aog (2, Zx) +a1(Zx Wy, zn)?ﬂuznfl?f—Nlluauxﬂlei
={v—N|F|*/v}|2:[5=rv(1-3) 2]k
Namely, we obfain

(3.8)

|z i<y Il
On the other hand, we know that
s =b(2s, A— ) +r.z;.(u Hu, 2,)+Q(u;, Tu, z,), Yu,EM,.
Furthermore we obtain

ol <{BIA= palutrlu—Hule+ sup 8@ TG O |1 v m,. (3.9)

uu.EIi wlul

Combining (3.8) and (8. 9), we have
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i

1 |G (1; Hu, wh)'
7lr <5 a>{ B inf [~ alutvju—Tuls+ su 3

€Ty 0, | x
The triangle inequality ylelds
[ — s | x< [ — Hufx+ |t — L] x

QO{ Hﬂ—“ﬂu |1"|— inf "h—‘wh"]{—l' S'I].]’XJ
Ha € My, whE s
where O is a constant dependent only on B, 8, ».
In order o estimate error |A—2As|a, We congider
5(0s; M pn) =b(Vn, A— i) —B(Vn, A—2a)
_b('l?]” }..—,wh) "l"ﬂu(ﬂ—ﬂy,, ‘v;) +G(“; s, v;),
for every €, € X, and each u, € M,. By Lemma 2.2, we obtain
1 o b0, M— )

B -
I mﬂx%ﬁ o 4 EAFE:
< — 1 {Bll?«. | x+v]e—th) x+ sup |G(u; s, ©) ] }, Vi € M;.
.B i€ u‘l’ﬂz
(3.10)

Oombining inequdlities (8.10), (3.5) and the triangle inequality, the conclusion
(3.6) follows immediately.

Now we need to estimate Q(u; II'u, vy) and G(&; &, v,). We have

Lemma 8.1. Suppose (u, A) is the solution of problem (1.4)—(1. 5) and
uC X N (H3(Q))2, A€ M N HY(Q). Then there exists a constant O independeni of h and
(u, A), such that

EIEIX |G(ﬂnfr ﬂn)' .;;Ohﬂuﬂxlulﬂm (3.11)
s IG(Tvt:ﬁ;vh)l <O|u—u) {1F]"+ julz}. (3.12)

Proof. Since
{G(u; Ty, vy) | =|o(; u, 0)) —o.({Tu, Iy, 0))|
= s (e —u; u, ©,) + ey (Ty; u—1u, 0)|
<N|u—Ou)z{|e]z+ | Tul}|vs]x
<Ohl ) z|8]2.0]Or] 2,
ineguality (8.11) follows immediately.
Similarly, we have
|G (8; s, 04) | = |21 (U — 2y 1, V) +as(ths; B—8, O)) ]
<Nlu—wniz{|u]z+ |thl}vs]=
<O|u—u|x{|F]"+ |&] =} |0s]

Then inequality (8.12) is proved.
Finally, an application of Theorem 3.2 and Lemma 3.1 yields the following

. eTTOT estimates.
Theorem 3.3. Sﬂppose that condétion (8.4) holds and that the solution of

problem (1.4)—(1.5) satisfies u€ X N (H*(Q))*, AcM NH*(Q). Then the following
ary or estémates hold
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e —wp]2<Oh{|08|s,0+ |A|1, 0+ a0/t 2}, (3.13)
(A2 <OR{|®|3,0+ |Al1,0F |8la.0) 2] 2} (1+ 0] 2+ 7). (3.14)
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