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A DIFFERENCE SCHEME FOR THE
HAMILTONIAN EQUATION*

QIN MENG—zHAO0 (£ X 3k)
(Computing Center, Academia Sinica, Beijing, China)

§ 1

. In the recent DD-5 Beijing conference, Feng Kang proposed three types of
difference schemes for the Hamilfonian egquation from the viewpoint of symplectio
geometry. In this paper, we give a further discussion on these schemes and propose
another difference scheme suitable for the nonguadriec Hamiltonian function of
second order.

We congider the following system of eanonical equations

, ¥ dp, _ —0H
dt oqy
=1' 2, L N | 1.1
da. _ aH 4 y W ( )
dt oo, ’

with Hamiltonian function H (p1, Da, ***, Pry @15 G2, **s Gn). Lot the space RB™ be
equipped with a symplectic structure defined by the differential two form

— .
Zq D 0 En-
w?’=dpAdg, z= =[g], J=[—-Eﬂ 0|
s |
| 1 07
. 0 —H,
b, = o ; J'1=J=—J=[ ]. (1.2)
' E, 0 |
| _0 i
(1.1) can be rewritten as | | |
dz ==J-1H.""'JH| - | (1.3)

dt
with solution z(%). s
Assume that for each £, 2(0) =>z(t) defines a diffeomorphism g(Z). Then iig
Joocobian G(Z) is a symplectic matrix, i.e.

FDIGE) =T, (1.4)
Suppose H, can be writien as A(z)z. Then equation (1.3) has the form
- dz
r —JA(2)z. (1.5)

We oall the first scheme investigated in [1] (one-leg C-N difference schems) the
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Euler scheme

+1_ oL 1 |
z" Ai 2?".= _J.A- 2"1_#_. _ (1.6)

Multiplying (1.6) by 4. z“+12+ 2" and summing over all m and noting that J is

antisymmeirioc, we have

ﬂn-}‘i_ pn 5M-}'I -[—ﬁ"
( g oy ) e

At
If the matrix is a symmetrioc constant, wo have
( nt+1 Azn'!*i) s (Z", Azn). (1-7)
Let | H|*1= (2", A2***). Therefore we have
| H "= [H|"=eee = | H | I (1.7)°
-1 -
The amplification of this scheme ig [I -+ %J A] 1 — —;-J' A] , Which isa symplectio

operator. When (1.5) is well posed, then this scheme is absolutely stable.
Now we congider the hopscotch method for the system of eq_u&tzon (1.5). The
method requires that we combine the ﬂlmple one-gtep processes

; gt At J Az, | (1.8)
gl At J Azt '- | (1.9)

using them at alternate node points on the #-axis. If (1.8) is used at those points
with m even and (1.9) is used at those with m odd, and Jf we define

9m={1 if m is even,

(0, otherwise,

then the hopseotch method is .

L AT At =gt — Mg T A, (1.10)
Writing (1.10) Wrbh (n+1) replacmg n and el1m_111a‘h1ng #*1 from this equetion,
we have

22 gt A1 (J Az J A) ~ AT A, T
Whﬂn n is odd, the above equation reduces to |
2?12 = gr— 2 ALS Azt (1.12)

which is just the leap—frog secheme. Multiplying (1.12) by Az"“ on both sudes and
summing over all space points, we have

(ﬁn+ﬂj A2“+1) (£n+1’ Azn)_ _ : (1' 13)
We first nse the forward timé difference scheme |
| A |
_ _,51 T4 (1.14)
We obtain | |
| (21, A2°) = (2°, Az°).
Therefore

(2, A" = ("1 AZ") = eve = (z: , Az2%) = (20, A2°). (1.15)
We oall these schemes quasi-energy conservative. Let (1.12) be rewritten in form
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Fordp TR a2 L i

g — ol L 2 ALT A2?, (1.16)
Multiplying (1.18) by 2"+ and summing over all space points yield
j2" 2 — [t R — 248 (2 122, T A2M), (1.17)

We define s, by
' So == 222+ 2|2+ 248 (2, J A7),

Hence |
8 — 81 = ["" 2 [l2 7|2+ 248 (2", T Az") — 248 (2, J A1), (1.18)
Then 8, —8._1=—24¢ (2", JAz").—24t(z", JAz* 1) and we have |
8 8a—1 S+ 2400 (2] 2+ [ 22 9). (1.19)
Fuarther, |
2| (2", JA) [ <Az ]2+ 2], (1.20)

where A is the maximal eigenvalue of matrix JA4. So if Adi<<1, which is in fact the
Courant condition, we have

K727+ D) <so <K ([2n]*+ |22 %) (1.21)
for some constant K >0. Stability in the norm s, is easily obtained from (1.19) and
(1.21) as follo;vs

8 812410/ K"s,,
3, S 0xp(2Andi/K™*). (1.22)
Thus, it is olear from the equivalency of s, and [2**1|2+ [2*[® that
2254 a0 (J20]+ [4]9).
We can summarize this disoussion in -
Theorem. When matric A is a symmeiric constant, the hopscotch scheme is

stable. When AAt<1, this scheme is quasi—enercy conservative. | ..
Next we degoribe a self-adaptive procedure based on the conservation of disorete

energy
zﬂ"!‘i i zﬂ_i

T A e

Aty= A(zr—2"" )T Az / (J Az, J Az™),
where the values of 4i, are computed recursively according to
log1— bpq= 24%,.

This scheme is still explieit and is of second order, and is in the energy conservation
form. Denofe J Az" by f: |

(zn-l-i} .A_Z'H'i) ] (zn-i gdtnf? A(ﬂ"-i—l— zdtnf))
= (a3 n=1" 2 (f,A(z“— ‘”“n_i)) n—1
il A T T i

L 20f, A@—2"2)) w1 (f, A"—=2""H) 7
Goan —Ah e St A (g, 4D

| = (2", Az"Y).

[11 proposed energy conservative schemes by Hamiltonian differencing which have

first order accuracy only. Here we propose another more symmetrio form, which

possesses second order acouraoy.
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P —
For simplicity, only the case n=2 is given:
dpy 1 { H ( py paGsqs) — H (9:10:91¢5) } 1 { H (p15oq:q2) — H (p17571¢5) |

| dt 4 L AQ;{_ dgi .
j { H(-IHM:LQE) = H(ﬁ;}‘*ﬂgﬂﬂ) }__ 1 { H(ﬁlﬁgfl—;@g) — H(ﬁlﬁ—ﬂgiﬂgg) ﬁr
4 ﬁg1 4 dq1 y :
ddgti s 1 H (ﬁiﬁﬂgigﬁjd“ H (ﬁpﬁéiqﬂ)__} __]__1_{ H (E_imﬂg_g:@ﬂ) —=H (E’i“ﬂﬂ_gig_ﬂ) }
. o P1 4ps
_I___i__{ H (Eipsqlga)d;iﬂ (231?3_9’12'2) 1 _}___1_{ H (ﬁiﬂnﬁigﬂ)ﬁ;iﬂ (ghz_:rsgiﬁa)_}, |
-%‘%ﬂ_.: _ 1 { H(@Pﬂaiéﬂ)gﬂ(ﬁl%gi ga) q,_ i—_,r H(gipag:tg-n) — H{ p1Paq1 a) }
dsa . g AQQ
+l{mﬂ) —H (f’i ﬁﬂﬂ_iqﬂ) } 1 _f H (Mﬂ) — H (4 —EQ:LQJ) }
4 Agg 4 L ﬁqg ;
iﬁ__l{ﬁMﬂ)—H(M} { 1{H(ﬁ£ﬂ§1§n)—ﬂ(gﬁ:@} -
di 4 | Aps 4 Apg
+~1 {H@:@ﬂﬁﬂﬂ) "H(I_f_’lf’ﬂaiiﬂl} | 1 { H (P P_HHE:LQE) "“H(E:L E ag:tga:_? }
4 \° Apa 4 : Apg g

From the above first two equations, We have

L (H (pupsdsan) + H(Fs o) L (E (s agse) + H (P1Poguda).

From the last two equations, we have

1 - === — = | SRR

?)_"“(H(Pimzlqg) + H (p1Ps¢193)) ='§'(H(P1?291Qa) + H (p1pag1ga)) s
Combining these equa:hions,' we obgerve that these schemes have oxach conservation
of the Hamiltonian H.

§2

Tn direct analog with the finite dimensional cage of ordinary differential
equations, a system of evolution eguations involving the dependent variables &=
(uz, +**, Un) i8 called Hamiltonian, if it can be written in the special form

u,~Js(H), (2.1)

otional, & denotes the Euler operator, and J is &

where H is s Hamiltonian fun
skew-adjoint matrix of differential or pseudo~differential operators.
For simplicity, we suppose that +he Hamiltonian density has the form H(u, vs),

g0 that its » Eunler derivatives are

oH o ( 6H |
= aw...) 2.2)

' a;nd the symplectioc operator hag the form
J = (Jy) = (as02), | (2.3)
of real constants with deb{ay) #0.

where (ay) is an %X n symmetrio matrix
" The n equations of motion are
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Ry = AR

Tigdrkh

. (W) =T y8,H = (aye; H) . - (2.4)
For example, the wave equations are

.
g
0 1 - o
(@) (1 0): ( i;) 5 o

O

il N e Elace, o

u—(w) H 2](@ +w?)de.

The boundary condition, if any, will be periodie. Its equations of motion are

The digoretization of the difference equation of PDH should refain the symplectio
property not only in time ¢ but also in space variable. Here &z must take central

difference 4,, or it will not retain the symplectic property. So, for the wave equation,
we have, similar to (2.5),

) s

Evidently -~

(¢, sH) = (JeH, eH)=0. | | (2.7)
For (2.6) we take the first type of difference scheme
"l}"+1— ‘EJ'H "U“+1+ ’L""
A 0 4 2
— . 2.8
s ,wn. ( do O ) gpntl 2" ( )
T 2
wn‘l‘i + ‘vn
From (2.8), taking inner products with +12+ , and notficing the periodio
w" wh
2
boundary condition, we get
_%__ E (wn'l'i)ﬂ_}_ (w“‘i'i)ﬂ::.%_. E(wn)ﬂ_l_ (wn) ﬂ" (2 . 9)

From here, we can see that the fotal energy is conservative,
1% is well known that the equation of compresgible luid has the form

Dg Du Dp | 8 |
i 0, P-f)_f+v2} 0, e -oVu=0, (2.10)

Here g is entropy, p is density, p i3 pressure, and # (, v, w) are velocity, It has been
shown that $he Clebsch iransformation of the velocity field results in Hamilton’s
form for compressible luid dynamies.

The Clebsch representation of fluid velocity is |
U=Vop+AVui-sVy - (2.11)
in which @, A, m, s, ¥ are sealar functions of #€D and ¢, ¢, w, v are Clebsch

potentials. Writing A= ph, $=ps, we have three densities p, &, §, and three gauge
potentials @, u, » and Hamiltonjan density
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H=p(-%—lﬂl“+ﬂ)=ﬂ{%}?¢” (i)?ﬁ-(—%—‘h) H'H’(" %)} (212)

whose Euler derivatives are found by thermodynamioc relation o be

8, H = — u (M +sVe) + || *+h—oT,

e H=—uVpu,
sl =—uVr—T, " (2.18)
s, H=V+(ptt), -~
‘g, H=V-(A2),
. e, H=V-Gu).
Here b is enthalpy and T is absolute teﬁiperature." Thus we get Hamilton’s canonical
equation for compressible fluid dynamics (2.10) o B --

in which- - e e e IS
7 ( 0 E)
i o ok B 04
Here U is a column vector U= [p, %S, @ @, ¥1° and ¥ is a 8 X 8 identily matrix,
We wrife (2.14) in concrete form - ..
Cop _0H 26 _°oH _ _ yov. 1 gt - 13
A 20 'i?(pu) ' 6 dp .Il.(f"i.Vp.;—‘l-s?r)+ 5 |e}2—dT, -
& _ —8H S5 _3_!~6_ - af - gl ¥
ot  Ow .?(}“f‘)’ﬁ o , o "W’-. . e
S T B e uvy 1.

Tn the above p, A, § are called densities, and @, W, v “potentials”.

-

Bécause the sfate variables fall info two groups: potentials (@, 1, v) and densibies
(p, A, s), this desoription of compressible flow has the advaniage of keeping the

congervation of energy. Multiplying both sides of (2 .14) by sH wo get

(U, eHy=(JsH, eH)=0. . (2.16)
We know | | o | _ :
' 92 @, em=-0. . @D

First we rewrite (2.15) in form | =
| o - U= —-JA)T, | (2.18)
where A(U) is a differential operator with respect fo the gpace varisble. Using the
mean value theorem, we digeretize (2.18) .

H—H* _ ("™ 40y Oas=0A@0HU" = L= 4@ T* =0, (2.19)

At i 1 At
where U"€ (U (), UG@™). g at .
 Thus we got a scheme with exao conservation of energy

'H;-Ili_; H“=U“+1A(.Uf)U*'-—r U_"A(U*)U*?-—O.;: i g . " {2.20)
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T = : v SN Lt e A . = = _—l—_n-__“——.-.__.qj.:_l,

But in the real case, the mean value U* ig difficult t0 be defined.
First we discuss the one-leg O-N difference schems

i o N

on both sides and summing over

Multiplying (2.21) by A (

all m we have

AL F i ) Ut e
2 2

] ( qn+; : U (Un+1 +Un. )Uﬂ_l-; +Uﬂ )‘-; Q
or

(Um A(U"“+U’*)U"+1+U“) (U:L, (U“+1+U" )U,,,jf;q;_,,_ :
We know '3

dH
—— = (UAO)D).

Using the tr&pezmd formula, we get
H - H"ﬂ— " UAU)Udt= Ho+ 440 4 ( U"+1+ U )(M) +0(4).

2
Then
B e B (U -0 4 (L EENOTA TR ),
Hr=H*14 ([ — U1 A.( q_“ -I-2U"_1) ur +2U“_1 +0( A‘lﬁﬂ),‘ (2.22)

JH™1| = | H| +0(42). |
Equation (2.21) is nonlinear. We can apply the predictor—corrector procedurs
U*—U“—dtJA (U*)ue,

U= Te— a7 AU L ;’*‘U" A (2.23)

Next, for (2.16) we can apply timestaggered explicit schemes deseribed in [2].
Here wo propose a leap—frog scheme as distinguished from [2]

zn-i-i__zn—:l. _ = . | _ - |
. . g LA P, | . (2.24)
This scheme also hag |
- Hf=H°+0(4:%).

Remark, 8Scheme (2.21) is a canonical difference scheme, which will be
discussed in a subsequent paper.
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