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Abstract

This paper deals with a multigrid algorithm for the numerical solution of Navier—Stokes problems.
The convergence. prmf and the estimation of the contraction number of the multigrid algorithm are
given. -

§ 1. Introduction

»

The multigrid method is a new method for working out the numerical solutions
of elliptic differential equations. Briefly, it consists of smoothing process and coarse—
grid correction procedure such that the operational time ean be saved and the
convergence rate improved. The multigrid method for solving large systems of linear
equations, which arise in the numerical solution of boundary value problems by
finite elementy, has been discussed by many authors, e.g. Astrachancev®,
Nicolaides™”, Bank & Dupont™, Hackbuseh ™, Wesseling™? and Verfiitht, In this
paper, we disouss the convergence properties of the multigrid algorithm for the
nonlinear Navier-Stokes problem:

— pde+8-V+grad p=Ff, in Q,
—div#=0, in Q, (1.1)
#={0, on o2,

where #=(u, s, *--, %;) and p are the velocity and the pressure of ﬂu_ui re-
spectively, w i8 it viscosity, @ R’ a sufficientily smooth domain, and

u-?u=(§m3u4/3m,)

The general structure of our convergence analysis for the multigrid procedure
ig similar o that of Haeckbusch™~™, and the convergence result of the multigrid
algorithm for Navier-Stokes equation is based on the convergence theorem of
nonlinear multigrid methods™. It is known that the main sufficient conditions of
the convergence of the mulbigrid method are the smoothing properties and the
approximation properties. Therefore in this paper we firgt give the proof of the
smoothing properties in some diserefe norms, then prove the approximation property
from the usual approximation agsumptions in terms of Sobolev spaces and finally

i=1; myd
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discuss the convergence of the multigrid algorithm and estimate the confraction
number under general assumptions. We have fo consider the nonlinearity of

equation (1.1) and different orders of differentiability of # and p in (1.1). Thig will
be compensated for by considering the nonlinear multigrid methods ingide the neigh-
bourhood of solution [#, p] and by introducing mesh-dependent norms. To simplify

the analysis we present a smoothing -procedure which is related to the Jacobi
iteration for scalar problems™, |

§ 2. Preliminaries

Consider Navier—Stokes eqﬁatiﬂﬁ (1.1) in a smooth enough domain and ifs
variational formulafion: |
Find [u, p] €Z =X % Y such that
{wo(u, v) +a(8; 4, ©) +b(0, p) = (S, D)o, VOELX,

2.1
b(u, Q) =0, VQEY! ( )

where
ao= {Vu, VU)o,
a1 (w; #, ©) = ((w-V) &, U)o,
b(u, p) =—(div #, D)o,
X =H{(Q)", X°=LQ)",

Y = I2(02) ={perﬂ(m :L pdm-—'-—(}},

‘and (v, +)o denotes the IA—inner produoct.
- Let 2 be a smooth enough domain sguch that o, a; and b satisfy the continuity,
_eoeroivity and Brezzi’s conditions™, regpectively. In addition, we assume the
following regularity assumptions of problem (1.1) and its duality problem: If
fe€L2(2)", then [u, p], [w, g1 € H*(Q)'x H*(Q) with |

i [, p]{ax<<e|S o, (2.2a)

| [, 4] a1 <elf fo, (2.2b)

where ¢ denotes the generio constant and [w, g] satisfies the duality problem of
(1.1).
Introduce a Navier—Stokes’ operator

: —ud+(I-V d
-g.?f=|; l‘b +( ) grﬂ' ]] (2-33)
—div 0
" where I denotes an identity operator; then (2.1) is equivalent o
| Flu, p]=%'[u, p] —[f, 0]=0. (2.8b)
- Obviously, the linearization of ¥’ equals :
—pd+8L1,(w) grad] [wla+8Lu () Ing
L [u: f"] = . _—
—div 0 _ Ligy 0
5Lu(w) 07
-L"'l"[ 11( ) ]] (2-4)
0 0
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_whare (OLy1 (U) V) 11, mra = 2(@,3@; / 3:1:, - 0,0y /3@;) = Ln = —4, ILyg=grad and Lgi

—div.
Let X3 X and Y ;<Y be two families of finite element subspaces with

ho> by > by s >Ry, X 1< Xy, Y iaCYy,
and the nsual appromma’ﬁmn agsumptions and inverse inequalify:
inf [o—vju<chi=|v]s, VOCHA(Q), O<a<li<p<2,

WSS (2.6a)
inf [p—p la<<chi™*|pls, VpEH(Q), O<a<<f<l,
[vi] ca<em Mo, YU,EXL (2.5b)

The spaces X, and Y, have to fii together so that the disorete Brezm 8 condition of b

holds.
Put the product spa.ce

Zy=X,xY;
equipped with the diserete norm
[ (g2, 2] |o={5*[ 88:[ 8+ | 2]} S} */% (2.6)
Define a matrix |
H;nl:h‘;[ :[:], A (2.7)
where I is a d Xd identity matrix. Then we got ; |
| (o, 21 o= Ei* [t 211 o~ (2.8)
Consider the disorete analogue of (2,1) in Z;: Find [, p;] € Z, such that
: { pao (8, Uy) +ay (U W, ;) +0(v, m)=(F, ), VUEX (2.9)
b(eg;, 1) =0, Vg &€ Y!

~ According to Galerkin’s finite element method, problem (2.9) -has an equivalent
matrix—vector gystem
& [4;, p;] ={), | (2.10)

Here we again denote by [#;, »,] the veotor consisting of ifs components with the
intention of not overloading the presentation with notfations, Thanks to the above
oonditions, (2.1) and (2.9) have, respectively, at least one solution [u", p*] and
[er, o:].

Corresponding t0o the nonlinear operator #;[-, ], there exists the linearization
-from . -

| Liy1a+8Ln,11 () Iy1al SL; (1) O
L;[u;,p:]=[‘u' w1t 3L,z (th) ”’}-LH[ i (th) } (2.11)
Lh_ﬂ:l. ' | 0 0 0

where L;, 11, SLI, 11 (“;), L,;_ig and L;,ﬂi are the discrete ﬂﬂﬂlﬁgueﬂ of L;u_, 5L11 (ﬂ) » Lj’

and Iy respectively.
Let &, be the space consisting of the right-hand grld function, [f:, g:] on

(2.10), equipped with the norm
+ T - | LFs gid|om=o{R: Hf:ﬂa-l- fg:03% - (2.12)
Then from the definition of H; in (2.7), it follows that : |
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[ (S g ||5=-‘_|JH:|:f:, 9] | o | (2-13_)
For the vector forms [#;, »] and [f;, ¢;] on (2.10), we again denote by |+{. and
{+]|s their norms, respectively '
| (25, 223 [|o = {77 %[0} + I |7}/,

(LS 93| o =1{R |2+ [ )32,

Euclldean norm independent of #,. Note the equivalence of
cage.

-

§ 3. A Nonlinear Mustigrid Algorithm

- We consider a nonlinear multigrid iteration for equation (2.10) inside the
neighbourhoed of the solutfion [&;, »;/]. Let & be a positive number such fhat
Fi[+, «] is a homeomorphism from

Z:(Sa), - { [t p]t " [, E?ﬂ . [u?: 5:'5:' ] ”u<31}
to .
T (e ={Lf:, 9] =% [u, o [, o] €21(61) }s

For equation (2.10) we define a smoother

Li{lw, pd, [F, .‘?a]} = [8;, p] —wiH{L; [t;, p,] Hi (-g’ (e, o] —[F, 1), (3.1)

where I; [+, <] is the conjugate operator of I;[+ , ] and «; a smoothing parameter

(see below).
Given the initial approximation [#], »'] € Z,(s;) to the solution of (2.10) on
£,(1>>2), we define the followmg iteration pmeedure solving (2.10) msnie the above

neighbourhoods: _
Given: [, p.] and [f;,;, 7x] =.9"’;,, (2, D], k=0, 1, -, 11, (3.2a)

do steps 1 and 2 for ¢=1, 2, «-.
1. Smoothing:

[u;, I—']=fz{[u§ Pz] 0F. | (3.2b)
2, Coarse—grid correction: L |
. [d; 1,1, di_s,0] =rZ[nt, pil; - (3.20)
s____{;‘ :-1/ j [#z-i,:, di1,a] || #, Ei:::: ;:r:;;]j[}(;, : (3.2d)
[EI—-L:L; gl*irﬂ]l= [.ﬁ—:; gi-1] —sldy_,1, d:—i.ﬂ];- (3.2e)
Gompute an approximate solution [©;_s, ¢: 1] of the defect equation on £ 4:
2Ly 1[0y, qidd = de--l.i: di1.9] (3.21f)

by perfurmmg v, V=2, iterations of (1-1)—grid scheme to (3 2f) with sfarting
value [#; 1, pi-1];

(™, pi™'] = [, pi] +p([Vis, qra] — [":—1; pi-11)/s. - (3.2g)

¢i1.1 iS some positive number, and s and p stand for the resiriciion and the
prolongation operator:
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r=blookdiag{ry, rs}, p=Dblockdiag{p,, ps}, - (3.8)

respectively.
At the lowest level I=0, we have to solve equatmn. Lol®s, qo] = [dui, dea] On
£29. Assume that these equations are solved by an iteration

uHI, 1%4-1] 950[“5 Pﬁ]
oonverging to ¥ [dm, do,] whose contraction number is denoted by g,.

§ 4. Stokes Problem

Oonsider Stokes equation in the domain 0:
~du+grad p=Ff, in Q,
—div =0, in Q, (4.1)
©=0, on 80, "'
The saddle point problem of (4.1) reads
Seek [, p] € Z such that
{ﬂ.»o(u, t’)—l—b(v, .‘p)=(f: 1?)0, ~‘v’v€I, (4 2)
b(n, ¢)=0, Vee't. '

The disorete analogue corresponding to (4.2) in Z; can be written as follows:
Find ['u;, _p;] € Z,; such that

»

{ ﬂ[l(uh vl) + b (vh Pf) i (f.r vl) ﬂ; Vvl G -Zh (4 3)
b(u, q1) =0, - VgEY, '
Similarly, problem (4.8) has an equivalent matrix—vector form
- Li[w, pl=[f, 01, ' (4.4
where Ij is from (2.11) with p=1. |
Li=H,LH, (4.5)
Lemma 4.1, There ewists a constant ¢ so that
|Zt | <e, Bt <o,
where |+ | denctes spactral norm.
Lot | |
1/w) = | I} | <e. (4.6)

Then we define the smoother for equation (4.4)

f{{[ﬁ;’ _Pﬂ:l e [fh .9'1]}“ [ul: PI:I — HHELE 'HE(LI [uh _'p:] [fh 9‘:]): (4'7&)
whose iferate matrix equals

O =1 — HiL;"Hi Lo} (4.7b)

Here I;" is the con jugate operator of L. |
Lemma 4.2, Let U bo a Hilbert space with scalar produet {+,«>, and norm
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Qufu= V<, tye, UET and A a matric such that 0<A=A'<L, Then
UA(I—A_D”HHQ::.(P), _

‘swhere
() ="/ (L+w)**. !
Theorem 4.8. The smoother (4.Ta—Db) satisfies the smoothing property:
LS | see<y’' (v) =en/m0(2v) , for all ¥=>0, 1220, (4.8)
Proof. Note that o
S =T —H L H =T~ H M H;, (4.9)

§; = HiS Hy=I — oLt} =1 M,
where M :—m’?f;{'f;{ with | |
( OQM;“E;I | (4.10)
BO nsing (2.8), (2.18) and Lemma 4.8, it follows that

HLES”’IIJFFIIS’L:S'”H:ll%ﬂHpL;H;Hﬁswmn’=||ﬁ§~H=
=[Sy L L8y | = i | My(I — My)™] <o™mo(2v)

which iy the desired jheorem.
. From (4.9) and (4.10), we have the following result:
Corollary 4.4. "There exisis a constant ¢ such that

§ 5. A Linearization Equation

Oonsider one more goneral linear equation
— e du-tc- vu+(u-?)d+gradp=f in Q,
—dive=0, in Q, (6.1)
#© =0, : .~ on 24, E

where ¢ and d denote two sufficiently smooth vector funetions in Q. Its equivalent

gaddle point problem reads:
Find (&, p] € Z such that

{Pﬂﬂn(ﬂ: v) +a,(u; d, v) +a:(c; 8, ©) +b5(V, p) =(J, Vo, . Vve X,

_ _ 5.2
b(#, q) =0, VgE Y. -
And (5.2) is equivalent to o
with "
1 C—ud+cV+{(~V)d grad]
: —div 0
C—ud grad] T V+(+V)d O:I
=- e h =L+ L". .3
- _ o« o|=L+E (5.3b)

In contrast with (2.4), we get ¢=d =u with & from (2. 4) Obvlously, if ym1, I’ is
‘$he prineipal term of L-and Stokes’ operator. |
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- Let

a (8, ) =ao(n, U)+a(u; d, v)+a,(c; u, v). o (B.4)
The disorete analogue of (5.2) in Z; reads: |
Seek [u;, _’p,r,] C Z; such that

{ a(t, v;) +o(, o) =(f, v)o, V¥,EX, (5.5)
b(l&;, g’;) =U, VQ';E F;, "
or the slightly more general problem _

a(t, v)+b (0, ) +5 (%, ;) =F {0y q), Viv, ¢ €7y, . (B.6)
where F, ig a linear functional on Z,. In particular, on the finest grid,

Fi(v;, q)) = (JF, v, Vv, ¢.] €2,
(6.5) has a corresponding matrix vector systems:
Lfw, p]=[f, 0]. (5.7)
The diserete analogues of I’ and I" are denoted by L; and I? respectively.
Theorem 5.1, Define the smoothing iteration . -
& :{[ﬂl; 2, S, ¢} = (&, pi] — W} HIL} Hy (L[, p] ~[f 1 .9:]_)

for problem (B.7). Then LoSt again satisfies the smoothing property (4.8) with
(¥) = (1+8)ea10(25) and & being any positive number,
Proof. From

Similarly,

S; =I—w*HIL*H?L],

. Li=HIH, o*=|L]<o, .

and letting 87=0, it follows from Theorem 4.3 that I;87® satisfies (4.8) with
' (¥) =en/1,(27) . Since '
| L [a,, 2] [ o= ”L;Iri:tulﬂ.r=ﬁlﬂ-z'?.11utﬂ;

H 4 -nnillﬂ“" (L, 118¢;, Lf.nu;) =y (ﬂ:; d, Ly v1188) + a4 (c; ’;,

| <ol ]| L}, 111, ’]ﬁ‘gﬂ}hﬁlﬂﬂlﬂﬂ”l}fi 128

F ’ Jlui)

2
we have

L [, D] | r<e|t;].
Consequently, we obtain

ULFHFH“ suap "LF [uh Pi] " 3’/" [ul: _pl] ﬂl

(zn ;1€ E,;

<o sup [fo/ (A ;o) %ck:—a-o, l—> oo,

Then by Corollary 4.4, 8 =0, and the criterion of smdothing property [7, Oriterion
6.2.7], we can prove ibe degired result.

~ §6. The Appmximation Property

Let Q be smooth enough g0 that the regularity assumptions (2.2a—Db) hold for
the saddle point problem (5.2) and its duality problem.
Define an affine space

Z;(0) = {v; E_-X ﬂa (v, i) =0, 'FVM cY,}.
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Lemma 8.1. ZLet [, »] and [t, p] be the soluiions of problem (56.2) and
(b. 6) respectively. Then there ewist constants 1 and cg 80 that

g —t 1 <cy inf |22 — v:”:l‘*'f?slnf“_@? 1ot gs

w1 €£400)

Proof. Assume
. w,=v;,— U,
then
alw, w;) =a(v;—u, W) +a(u—u, ).
By (6.2) and (56.5), we got - |
a(t—u;, w;) =b(w,, p;—f).
Note that for all v,€ Z,(0),
b(v,—wy, ) =0, YuE€Y,
5o u
a(g—u, Ui—t) =b(vi—u;, pi—p), Yy, Yo, € Z,(0).
From the coercivity and continuity conditions of ¢ and b, ib follows that
ol o — u;||1@m(ﬂ;—u;, v, —u) =a(V,— U, U;— 1) +b(v,,—u;, wi—p)
w " 'Qﬂﬂt?z—ﬂﬂ ||v,——u;ﬂ1+B||v;—u;|| [ e — 2o
Uonsequently,
|o:— w1 <A/ v, —w] -+ B/a| p—plo.
Combine this with
Je—u, 1< |u—v] s+ |[Vi— ]2
and the lemma follows. | |
Lemma 8.2. There exists a constant ¢ such that

inf Hu U;h"@ﬂlﬂf hﬂ wi[l
i€ Z(0)

Proof. It suffices that for all w;€ X, there exists the corresponding ;€ Z,(0)
such that

ju—vi]i<clee—w]..
Let 0, € X; and {y;, v} € Z, satisly the fo]loﬁing equation:
{ (y,, v)1-+b(vy, ») =0, Yo.c Xy,
Ly, m)=b(u—w;, ), Y€
Using Brezzi’s condition of b, it follows that |
; 3 Nmlo<i/rlyils, 1ol <B/r|t—wis.
Let v;=1+w;. Then : |
b(vy, ) =b(—wy, )+, w) =b(w, ,UJ:)
Therefore ;€ Z,;(0); consequently, |
| | |—vi]i<|e—w]:+ |9 < QA+ B/r) [#—wis
Lemma 8.3. The following error estimats holds |

| H?—Pi“q‘ﬁﬂ(ﬂ"_‘" e+ Elﬁi;l”z?—mﬂu)
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with ¢ constant.

It can be proved similarly fo the above lemmas.
Lemma B4 e t; C .X-; and p;e Y; be orthﬂgml {0 X;_i and Y;..j_, 18-
spectively, with respect to («, «)o, and [V, ¢;] the solution of

- a(ty, 2)+06(Z, q) +b(Vy, 8) = (8, 2)o+h(p, 8)o, VIz, s1EZ,. (6.1)
7 | |
| (01, g la<<cki| (2, 2 [, (6.2)

Proof. Let [w, »;] €7, be the solution of

ﬂ(wh Z)"|—b(z, ‘n)-}'b(wh 3) =(uh z)ﬁ: V[}Z’, 3] EZI' (6'3)

The continuous analogue of this is:
Find [w, r] € Z such that

ﬂ(wr 2’) —|-'b(2', ‘J')—{-B(w, 3) == (uh 3)0: V[z: 8] Ezﬂ- (6-4)

” [vh 5?;] |]l'€ﬂ I:vl_'wh gl_'ﬁ] ||l+ H [wl_w: r;—rr] ﬂ:‘f‘ H ['w;r ‘J"] Hl' | (65)
We esiimate each ierm on the right-hand side of (6.5). Denote by II? the
orthogonal projection of X°® (respectively Y ') onto X, (respeciively ¥;) and by
II} the orthogm:;al projection of X onto X,;. It is clear that

Note that

- g I} _swy=1I7_; p,=0.
From (6.1), (6.3) and Brezzi's condition of b, we have
rig—nl< sup b(z, ri—gq)/[2[1<A]v,—w], (6.6)

and
a0 — 1w, i<a(V;— W, O;—wy) =bU:—w;, 71— q) <K [plolri—ailo.

Lot [¢, n] € Z be the solution of |
a(z, ) +b(z, n)+b(E, 3)__== (v;—w,, 2)g, V[z, 8] €Z.
Then by (6.1), (6.8), (2.2a—b) and (2.5a), it follows that
jvi—wi|i<a(vi—w,, -1 _1&) +b(E— I 1€, qi—a) +0(0,—wy, n— I} _m)
<chi{|tn— w:l|1+Ilrx—mlln}uv:—wxllu (6.7)
Frcrm (6.3), (6.4), (2.2a—b), (2.5a) and Lemmas 1—38, we immediately get
{[w—w;, r—r]]ie<oe inf [[w— zi, 7 — 8] 1. .;.é;oh;ﬂu;ll

{z1.8]€2;

Combining thig with a standard duality argument™’, we gef

| [0 —wy, & —o] |a<chi] e o- (6.8)
From (2.5a) and (6.4), we have -
3]|0‘|!u'§igg[(“h z2—II} 12)o—a(w, 2)]/|z|1<ch|w]o+A|w],, (6.9
and - -
a|w|i<a(w, W) = (U, w—I1I7_1w)<chi|u] o] 0] | (6.10)
An argument similar to estimating [v;,—w;], yields -
|w|3<chi| o] w0 o. (6.11)

By combining (6.5)—(6.11) the lemma is proved.

Lemma 8.5. Let [w,, ;] be any element of Z,, 0, ;€ Xy and 11.4€ Y _4 denote
the orthogonal projection of w; onto X;.y and of 5y onto Y 13, respectively, with respect
io (», »). Then
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’| [0;— W1, 71— T1-1] |22 Iy [, 7 | o] [0, @i e
with [V, q.] being the solution of - | . |
a(vy, 2)+b(z, q)+b(wy, 3) = (w; ;4 z)g+h.2(a';-—r;_1, 2o, VI[2z 3]1€EZ.
= £ (6.12)
Proof. . In equality (6.12), let [2, s] equal [0y, r.]. Then by the orthognnalﬁy
from this lemma and the symmetry of Ly, the right—hand side of (6.12) equals
hﬂl [wi_.wI—I: Py~ 11-1] s _
and the left-hand one |
a(t;, w;) + b(w:: gi) +o (g, 1) = (Lh:livh to,) (wu Ly, 1303) + (L, 210, 72)
= (L, 10+ Ly, 1ams, Op) + (T, a0, @) <| Ly, :uwri"L: 1a7]| {0s] + ﬂ.L;.n:Lw; el
< (A L, 11001+ Ly, 1274 | + || Ly, syt | %) Y Q(h"llvx{l ‘l‘“!? H”)” i |
- ||L= [wy, 7]« ) V1, @i ﬂs
Therefore, we get
| [, — w;-;, =7 :-1] ME‘Q?&TE[ Ly [, 4] | o] (05, @1 ]as

whmh is the desired estimate.
Theorem 6.8. ” Thers ewists @ ocmsimt ¢ so thal

” _PLI 1T “ ﬂ-.fga

ﬂ{@th r=blockdiag{ri, Tar u:md p= biuckdwg{ P41, Pa} frnm (3.8).
~ Proof. Let [wy, ] €7, with [wi-u;l_, ri-1] from Lemma 6.5 and [#f_4, pi-1] be
the solutmn of

LI—:I. [} _1, D} *;-1] = L,[w, v} —r[f, 0. "' (6-13)
An argument Elmllar to estlmﬂ.’ﬁlng R
” | [w 1w, r— ‘1'1] s
in Lemma 6.4 yields |
| || [w:—ﬁ)iu;-ﬁ—ﬁllt_—lﬂifh TI‘;,"PEI_‘P?—J_.] “."‘Qﬂ" [0 “.ml-—ij 4’:“;!—1] ﬂ:r..o
<o| [t0;— Wr-1, 11— 7111 I : (6.14)
From Lemmas 6.4—6.5, it follows that | Ea iy o=
o [w:—ﬁ?:—i, 71— Ty_1] HEQ&;‘EH L[y, 1] g:&“ v, q. s
<clLi[w, r]|+] [, — Dy, 11— 71-11 {. |
8o by combining this with (6.14), we obfain
| [0, — putls_s — pr Liyra S, mi—papi-1] |e<el Lu[s, 1] |oe (6.15)
From (6.13), we gel o -
(2871, D7-1] =L1-—1'T'Li [w;, 7] —L: 17 [fh 0].
By this, it follows that a3 _
[0, — p18;_1 — P11~ arf, ’I’:—Paprwﬂ = [Ly "“PL_—ﬂ"] L;[w;, 1.
Substituting this into (6.15) yields -'
] [Lz — oL 11‘?"] Ly [0, 'I'r.] fe<c ” L: (W, s
| Elnﬂe [w;, :r;] is ﬂ.rbltrary, we ﬁnall}r have |

H L'lul “PLI—-:I.‘r u l-r-!<ﬂ
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§ 7. The Convergence Theorem

We will now consider the convergence theorem about algorithm (3.2) in
Bection 3. Before thiy, we will place restriotion on some quantities in algorithm
(8.2) so that it is well-defined.

Let [#, pu] from (8.22) satisfy [#, py] € .Z’k(pk/ﬁ) (k=0, 1, -, I—1) with
0<pp<<gy (0<k<1), and oy from (3.2d), py/e; (0<k<1) and @, be sufficiently
small. Then if [e, /] € Z;(p;), we obtain the following convergence theorem:

Theorem 7.1. Oonsider Navier—Stokes equation (1.1) in a domain smooth enough
to satisfy the regularity assumpiions (2.2a—d). Let X, X and Y ,CY bs two
families of finite element subspaces so that the assumptions (2.5a—b) and the discrete
Brezei’s condition of b hold. Then there ewists a number y 8o that the muliigrid
algorithm (3.2) converges for v=y and ifs cﬂntrﬁcm&n nwmber is boundad by 0‘\/‘7?0(2:’) |
with no(») from Lemma 4.2. - |

Proof. From (2.10), (2.11) and the smoother (3.1), we have

- Lilw, o] =05, pil/0(w, p], |

Si=87{[w/, ], 0}/0[w, p] =1 —wi HiL; (4, pi1 HiL,[u;, pi].
Then by Corollary 4.4, Theorems 5.1 and 6.6 and the convergence theorem of
nonlinear multigrid methods [7, Thm. 9.5.12], the desired theorem holds. _
From the above; it is shown that the multigrid methods can sucecessfully be

used to solve Navier—Stokes equation, and for the smoothing iteration (3. 1), the
oontraﬂtwn number of the algﬂrlthm is bounded by c«/ ne{2v) o |
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