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§ L. Introduction

As many authors pointed out, to solve plate bending problems and other elliptic
boundary value problems of equations with order higher than two it is much more
convenient to use nonconforming finite elements, for they have less degrees of
freedom, relatively gimpler base funciions and betier eonvergence behavior when
convergence ocoursy. There are ftwo methods, among others, whioh wuse the
nonconforming slements. One is the so oalled tolerance method™!, in which we
calculate the bilinear form of the variational problem element by element and then
take the sum (briefly, elements sum) as the value of the bilinear function on the
whole domain, just as what we do in using conforming elements. With this method,
the convergenoe of the finite element approximations should be analysed carefully,
gince they are not always convergent o the solution of the original problem as the
mesh gets finer. For the method many elements have been analysed, see, for
example, [2, 5, 7] and [9]. But all these analyses show that the convergence order
ia lower than that of the conforming elements with the same degree of piscewise
polynomial interpolation. This is because the elements sum is used to substitute the
ron] bilinesr form. The other method is the penalty method. As shown in [1, 3]
and [8], the convergence always ocours, but its order is only half of that of the
conforming elements with the same degree of piscowise polynomials.

"~ To improve the aceuracy order, we will give a compensation method in this
paper. The main idea of the method is o add somothing to the elements sum so that
the error caused by the substitution of this sum for the bilinear funection can be
sompensated. This method gives better approximationd than both the folerance
method and the penalty method under certain conditions. Moreover, if the elements
vsod are the so called weakly discontinuous elements™, the method gives
approximations of the same accuracy order with that of the conforming elements. In
addition it has the advantage that no Lagrange multipliers or other additional
parameters are uged, so no additional degrees of freedom will be introduced. Hence
the amount of computations will not be increased. _ _

| The paper is cutlined as follows: In § 2, & variational model with. compensation
of the clamped plate bending problem will be deseribed, and the existence and
aniqueness of the solution of the proposed variafional problem are analysed. In § 3,
the error estimates are given and the theorem of convergence is proved. In § 4, we
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will deal with plates with other kinds of boundary conditions. Finally, some examples
are given in § 5.

§ 2. The Compensation Method for Clamped Plates

Let us consider an elastic thin plate of a convex polygonal domain Q in R%. A
mathematical model of the bending problem of the plate with clamped boundary is

‘A= f, (21, @9) €O, (2.1)
1 ou
lo=Z=0, (@ ecan @.2)

where n is the outward normal direction of boundary Q. Set

& (u} 'v) T J oy (uﬂlﬁ'lwﬁlgl "I" gum;lm.'v#;ml + H‘E:#:wﬂjﬁl) dm;l

where do=dwidry, Uy, = aigg% » obc. We can associate with (2.1)—(2.2) a

variational problem:
Find u€ H3(Q), such that a(u, o) = (7, *’)“=L fode, WwCHIQ). (2.8)
»

As is well known, a(u, v) is H 0(£2)-elliptic, i.e. there exists a constant m >0
independent of u, such that

mlulio<aly, w), Vu€HIQ). (2.4)

Also, a(u, ») is bounded in H? (£2), i.e. there exigts a constant M independent of u
and v, such that

la(u, v) | <M|u|a,o]v]s,0.
Henoe problem (2.8) has a unique solution #, which ig called the weak solution of
(2.1)—(2.2),

We are going to consider solving (2.8) approximately by the finite element
method. Ag nusual, put a triangulation on Q and leb {3, be the get of all triangles
(elements) obtained. For ¢ € {3y, sot

ke =the diameter of o,

pe =1he diameter of the inscribed circle in o,

Lot | h=maxh,, p=minp,.

a €L o E Ly,

Next, we will consider a tamily of triangulations on £, which will be called a
regular family if each of its triangulation satisfies |

-ﬁ-@ c, (2.5)
a constant being independent of the triangulation. By the way, letters ¢ and O will
be used as generic constants which may take different values at different places. We
will always assuame that A1, Now, construct a finite element space (i.e. a piecewise
polynomial space) V7 associated with the decomposition of 2. Let ¥, (o) be the set of
all resirictions on ¢ of functions in ¥, and Py(a) the set of all polynomials of
degres <% on o. Suppose P,(c) =V, (¢). In goneral, we do not make the assumplhion
Vi, HE(Q), ie. V,isa noroconforming finite element space. For v € ¥,, set
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jolto=3 | (@*0)2da,

=1

Iﬂ = g "”IIE.#:
| g = PN
m
JoliZa=3] 013

Tet T, be the set of interelement sides or, sometimes, the union of these sides.

Corresponding to the common side of two adjacent elements v C V, has two traces vt
and v~ on 7. Set

[v] =0t —0". | (2.6)
T4 is clear that (vl is a function defined on Th,. Suppose

Gﬁ' ('15, ’U) == UEg;.Bﬂ' (umlmlwﬂﬂh + gun::m:@mn %‘ﬂ@,g,@;,gb aJm-

In the tolerance method, or if ¥; ig a conforming finite olement space, the
approximation u, of the solution u of (2.3) is obtained by solving the problem:

E&i@%ﬁ?% ﬁll{}h that ﬂh@h\ 'U) = (f ) v} oy Yo &V (2 1),
Assume Vac=0LQ) and v]:0=0, Yo &V Define a bilinear form

oy, v)= > L (ﬁm (2] +Dnn [thn] + % [24n] [2a] )ds,

Tela
2
where u,=%, Upn = gﬂg and

~ 1 i
WUpn = '§' (u':ﬂ g u’nn) ’

and n ig the normal direction of = pointing t0 the “+4” hand. y>0 18 2 nonsta,n'h,-
independent of &, o be determined later. Set

b(u, v)=a,(u, v) c(uw, v) — Ln (u,mw,.—l-wﬂ,,u,,—l— 7;: u,.w,.)ds;

Instead of (2.7), problem | .

Find u, € Vs, such that b(u, v) = (f, ¥)o, YoEVa (2.8)
will be used to get our finile element approximation wy. Clearly, (2.8) becomes
(2.7) when V. Hi({2).

To study the properties of the bilinear form b(w, v), we mneed the following

lemma. _
Lemma 2.1. Assime vC Vs, o €Qs. Then there ewists @ constant C indeperdent
of v, ¢ and h, such that

j z p2de<<Ch™1 J v? da. (2.9)
o

o

The lemma can be proved eagily by transforming o in o the unit triangle and
using the trace theorem and inverse inequalifies. |

We assume that a,(w, ») is uniformly V.—elliptio, i.e. there exists a constand
a>0 independent of v and %, such that

ﬂui’ug,n‘gﬂh(% V), Vo eV , (2'10)_
Notice, for u €V, |
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TET,

If & ig an arbitrary positive real number, we have

J, lutawd las< 2 ()t [,

Using Lemma 2.1, we then have

o+ Ce 2 1
J.'r Iuﬂn[uh] |ds<;-§?-a— ]u.[z, m—]__é?."f [u-,,]ﬂds,

where ¢y and o, are the two elements lying at the “+” and “—” gides of =
respectively. Let

Iw,?.ﬂ'r_ Iivllz,ﬂ‘;_]— lefﬂ'l'
Then

L | (b2, [4,] ldsﬁ-%f- |u|§,a1+—i—L 1,12 ds.

Thug

C 1
) ey < G fultat L 3 [ pudras
» e T N

-3

3 * - 2 ) .
where Oy =+, since each seminorm |u|%,s is repeated at most 8 times when we

take the sum. If we take s=_" , Where a is the congtant in (2.10), then O, g/h=

304
a/3. Choose y=>30,/a, i.e. %& ?;%1 = 1‘. Thus we see
AL A J dggm — % (4|2
G(H, Hr); 3 Iulg_k+ (h p )TEEJJ;; . [‘i'.[-,,] ds= 3 [‘H-Igrﬁ,.

Similarly, we can show that

fo (et B srie— s

if constant v, is suitably chosen. Therefore, we have proved

Theorem 2.1. If a,(u, v) 43 uni formly Vy—elliptic and constants Y, Y1 are
suctably ohosen, then the bilinear Jorm b(u, v) @s also uniformly Vi—elliptie.

In faot, from what we have proved,

b(u, u) =a, (&,, u) +o(u, u)— Lﬂ (21.5“,,&,, -k -% uﬁ)ds

>alulfr—5 Julia—g |ulir>F lulfa

Remark. For soms finite element space V', it is possible and convenient to use
|2] 5,5 as the norm of ¥, see, for ingtance, [2, p. 366]. If, instead of l2)a,5, Wo use
this norm in (2.10) and a(*,+) i8 uniformly V s—elliptio, it is obvious that Theorem
2.1 keeps valid with this norm.

Theorem 2.2. Thers exists a constant M vndependent of u, v and h, such that Jor
Y U, VE V};, |

182, 0) [ <MAE2|u)s,s[2]an

Proof. Using Schwarz’ inequality, we can easily see
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|ea(u, v) | <|ula,a]|?]an (2.11)

Since
(Fion) <3 ( (1) + () ),

[va] ?<<2((vs ) ¥+ (v3)7).
We have

[ nrmdas | <(] wy2as) (] to%as)”
1 1

<([_ ety + @amymas) (| @+ )nas)

1 1
<(ChulZ, 5:) (OB |0]147) %, (2.12)

where Lemma 2.1 is used in deriving the last inequality. Similary,
71| [l [2]ds

A
Taking the sum with respect to # &1, we have
’ lo(u, v) | <<Ch™|uls,x]v] 2.
Also, it is easy fo show in the same way that

<Ch™ | H]Laf|’l?|1.ar-

l’uﬂﬂsh

J-?ﬂ (unﬂ'vn'{_'unnun _1_“% 'H-n'v“ ds 1 QO}L_B"HHQ,]‘

and the theorem follows.
Corollary. The variational problem (2.8) has a unique solution.
Proof. It is immediate from Theorems 2.1, 2.2 and the Lax-Milgram theorem.

§ 3. Error Estimate and Convergence

Let ug first give the following lemma.
Lemma 8.1. If u€ H*1(g) and IIu is the interpolation of u in Py(c), then

Jw ((u_ﬂu)rﬁ)ﬂdsgghﬂkﬂﬂﬂl|MI§+LF: 'T"l_sﬂ_'_’i’: @=UJ 11 ANy k: (3*1)

+1y,
where (W)r,s= 33’1 e and constant C is independent of %, o and h.

The proof of the lemma is easy and so is omitted.
Throughout this section a,(+, +) is assumed 1o be uniformly V,-ellipfic and all
the assumptions on ¥, in § 2 are valid. Now we can prove

Theorem 8.1. If u€ H*1(Q)NH;(2) and u; are the solutions of the problems
(2.8) and (2.8) respectively, where k=2 and Py(o) CV (o), then
|26 1p | aa<Oh* 2|y | k+1, 00
Proof. Assuming v€ H*(Q) temporarily and using Green’s formula on each
element, we see for any v €V,

ay(u, v) ="({f, v)o— f;‘h L Ups L Vp] dS+ J UpnUp 8. (3.2)

762

In fact, (3.2) is shill ﬁalid for u€ H'(Q), 1>>5/2. The proof can be found in [1].
By the uniform ¥V —ellipticity of b(w, v), if v €V,
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“"ua‘"“l’“g,h'gb(uh—*% Uy~ V)
=b(u—v, u,— ) +b(w, U —2) — b(w, uy—v)

le(u—w} Hh_—"v) I £n I (f: uh-"'w)ﬂ_'b(u: uh*"“’v) l: (33)

where we have used b{w, un—0) = (f, up— v)o. It is seen from the trace theorem that
when uC H'(Q), 1>8,

Ugws =Upge,, 8.9, ON 7, for VeeT,.

Thus U, =y, tiwm =1y Also, [u,]=0. So

c(u, v) = T§ Ui [v,]ds.
Then by (3.2),

b, ©) = ax(u, ) -+olu, v) —-Lﬂ Unnnds = ( , 1Yo
holds for Yo € V,. Now (8.8) gives

alun—v[3,<|b(u—v, us— ) . (3.4)
Take v to be Iy, the interpolation of » in V. It is well known that
" HH“HHHE.EQO’J@R—IJulk+1,ﬂ; (3.5)
and for w €¥,, |
- | an(u—TTw, w) | < |u— Huls,s|w]ss. (3.6)
By Lemma 3.1,

| - mayzas<onm-sjulz,,.,,

| w—nmiyzas<onsijuz,,,,.

We ses
| (B 0] + B [ 11,735
SORR=2 | g k+1,a¢,w,1,h+0hk_1|wlﬂrﬁflulk+1sﬂf
S OR2)y Jn+1,#rﬂw"ﬂrﬁﬂ
F, [ 1), (0 s | <OB*{u 13,00 ]
Therefore
le(u— Ty, w)| SO |u|g41,0]w] g, 3.7)
Similarly,

Lu {(u—ﬂu),mw,,—l—wm,(u—ﬂu), I ";;1 (u—ﬂu).wﬂ}dsl

SOF*2 4| p11,0[ ] 2,5
Using (3.4)—(3.8), we have

aﬂuh—ﬂul[g_yg(?h"“ﬂJu[;,J,i,g[]ur-—ﬂuﬂ

(3.8)

3y s
Hence

fup— Iy

s SO 2| u| i1, 00

Then, by inequality
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3,81 “H%"‘%huﬂ,h:

|1 — 2] 2,55 oz — ITu|

we got the conclugion of the theorem.

Thig theorem shows that if #>>2, [u—us[a2,»—0, a8 h—>0.
I4 is shown in [1, 3] and [81 that the convergence order of the finite element

approximation given by the penalty nethod ig A% /2, We see that the compensation

method is better if £>>8.
The concept of weakly diseontinuous finite element was given in

If for any vEVa,

[8] as follows.

- L (012 ds<CR®| v |Zom) (3.9)

and

I (0,12 ds<Csh|v|3ss, 1=1, 2 (3.10)

clement space for fourth

Mold for all vE€Ts, Va is a weakly discontinuous finite
10) are independent of @

order equations. The constants ¢ and Oy of (3.9) and (3.

and A.
We can prove that if on each interslement side

1) there are at least two'common interpolating points of the function, and
2) there is at least one common interpolating point of the normal derivative or
the mean values of the normal derivatives of 1wo adjacent elements are equal, i.e.

j u;'d3=j u, ds, -
¥ T

(3.9) and (3.10) are then valid. We have J

Theorem 8.2. Keoping the assumptions of Theorem 3.1 and assuming that V' s
to be zero outside

a weakly discontinuous finite element space and if vEVy ts taken
ond (3.10) s also valid on v 802, then we have
lee— U E.EQth_i ‘ (77 I L+1, 00

Proof. (3.10) shows, for wE V,
j Fa0,]2 ds<Oh|w|%25

Hence
L (u— T on[Wa] B8 1l <OR* | ulpea, v [ | ﬂ,m
I%L [(u—u) ] [*wﬂ]ck) < OR* 2| w| gt 0w | 2] 2,87
So we get
| e (u— u, w) | <OBF | ufus1,0] 0] 2,00 (3.11)
If 7200,
| [ (Tt <Ol 0] 20
. where o € Q, is the element which has 7 as a gide, Thus
.Ln {(u— Hu),..,w,—kw,,..(uf Hu).,—l—;};—:- (u-—ﬂu),.w,.,}dsl
(3.12)

< COR* 1| ul v 2| W] 2,5
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Then (3.4)—(3.6), (3.11) and (3.12) give the conclusion.
Now, we gee in Theorem 3.2 that the convergence order ig the same Wl‘f.ih that of

conforming elements which have Py(c) V3 (o), if the assumptions on V7 are valid.
According fo what we men'hmned earlier, mogt of the ¢ pla;lse elements” in use satisfy

the requirements.

§ 4. Plates wﬁh Other Boundary Conditions

If the plate considered is simply supported at the boundary, in the cage of the
plate being a polygon, the boundary condition ig (of. [4], p. 173):

| U=1Up=0, (@1, a) EE0, - (4.1)
ingstead of (2.2). The variational problem agsociated with the boundary value
problem (2.1)—(4.1) is:

Find u€V =H2(Q) N H;(Q), such that
a(w, v)=(f, v)e, V2vEV. (4.2)
It is easy to see that aw, ») is positive definite in V, i.e. for any »€V, v%0,
a(v, v)>0. We see that |v|s0 i 2lso 2 norm on V. Thus (4.2) has a unique

solution.

Let V', be the finite element space menftioned in § 2. Recall that we have
assumed that | -

1) V;CO(Q), P;;(ﬂ') CV},(D‘), VIT E Qh;

2) ‘!}Ign={], YoV,
In addition, we will assume that

8) there is at leagt one common point for each pair of adjacent elements, on
which all first order partial derivatives of each v € V', are continuous.

" Now we can see that

o |
. " . v—>|v|ga=(ar(v, v))* .. (4.3)
is also & norm of V,. Actually, |[v]s,3==0 implies that v, and v, are constants in
each element. Because they are continuous on some common poinés of any adjacent
elements, - they are oonstant in the whole domain 2, and then obviously »=0.
Clearly, ax(u, v) is uniformly V' ,—elliptic and bounded with respect to morm (4.3).

Set

bﬂ(u': ‘!J) =ﬂh(u‘: '!}) —I"O(M, "-!?),
1.e. delete the boundary integral ferm of b(w, v). Take the sclution of the problem:
Find w, €V, sueh. that bo(uy, 2) = (f, v)e, YVVEV, (4.4)
as the approximation of u, the solution of (4.2). Similarly to what we have remarked
in § 2, bo(u, @) is uniformly V,—elliptic, if constant -y of e(w, v) is suitably chosen.
Moreover, we assume that
4) V, is a weakly discontinuous finite element space. Then we have, for

e, ‘lJEV;,,

1 1

[ abend ds| < ([ (ot + umyny as) ([ To2as)”

1 1
<< (OR? l ’MI E,ar)?(ahl 'U{ 5,05) 2RO U 2,00 | V] 9,800
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Here (3.10) has been used. So
Iﬂ(!&, 'U) [ QO'“‘E.I}

v

25

and hence
Do, ) | <O|t|2,a[?]22-
We have proved

Theorem 4.1. If assumptions 1)—4) on V' are valid, the bilinear form bo(u, v)
és uniformly Vi-elliptic and bounded with Tespect to norm (4.8) and problem (4.4)
has a unique solution.

Similarly to the proof of Theorems 3.1 and 3.2, we can prove

Theorem 4.2. Keep the assumption of Theorem 4.1 and assume that u o8 the
solution of (4.2), u, 6 that of (4.4), u€ H*'(Q), k>2. We have an error estimate:

I‘H—th g,hQUh"‘i | u]]‘:+1,ﬂ-

Remark. If we cannot verify inequality a|v(3:<ay(v, v), all the disoussion
here may also be applied to plates with clamped boundary excep? that b(u, v) should
be used to replace bo(u, v). |

Next, sappose that the plate considered is with the free boundary condition on
part of its boundar$, say, 8Q;, and clamped at 942, simply supported at 842, where

20, 1 002, | 0825 =042,

To ensure the uniquené% of the solution, we assume that 8Q; UdQ; %@, and that 802
contains several segments not lying on a straight line if 0Q,—=@. The free boundary
condition can be expressed as (see [4], p. 171)
pAu-+(1—v) =0,
2
ot
for (wy, xa) € 42y, (4.5)

_ (A'M) mn (1 i P) {(H’Elﬂl S uﬂ:ﬂ::)%inﬂ_l_ulh#: (“’% . ﬂ'?) } =0.‘l

2
vector of 882. Set

V1={'H:E HH(Q); =0 on 393(_]393, u,,=0 on 399]’

where Odp-{l is Poisson’s coefficient, n,=cos(n, z,), 4=1, 2 and # is the tangential

and
"'31(“: '”) = J; {Au‘jﬂ'}' (1 = "’) (?-'ummﬂ:m-_ Uz,e,Verazs ™ uw:m'”mm) }dﬂﬁ

The corresponding variational problem is ﬂ
Find u €V, such that a:(u, ) =(f, v)o, VvEFV 1 (4.6)

Suppose V', satisfies assumptions 1), 3) and 4) and an additional assamption
2N Vo EV,, v=0 on 982, 84, where 00,1 8Q; is assumed fo oontain several
pegments not lying on a straight line.
" Put, for u, vEV,R,UV 4,

aih ('u’: ‘U) — 'Eg J'ﬂ- {du‘dw + (1 i P) (guﬂxll'vﬂh#l g uﬁlﬁlq‘?‘ﬂl e Hﬂ?lﬂlq"lﬁlﬂl) }dml

os(y v) = 3} [ {(wlut (L= )ien) [0] — (0 + (1=2)F0n) [1n] + §. [1] L0 bas
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and

ba(w, 9) =an(u, v) +ou(u, )= | {Gdu+ (1—»)u)o,

- #

+ (vdo+(1—p)o,,) u,,—{—-%l— u,@,}ds.

It is not difficult to verify the uniform Vj-ellipticity and boundedness of b;(u, v)
with respeet to norm |[u),,,. In fact,
s (1, ) = | du[3at (1—2) 013031 |ulds

gives the ellipticity. Therefore the problom

Find u, €V, such that 8, (us, v) = (f, v)o, VOETV, 4.7)
i unisolvent.
For ue H*(D), v€ H*(D), D R? being a domain, the following formula holds

J.D CQMEIEIQ?EIEI o u#a,ﬂh@n‘:ﬂl e u’#lﬂhﬂl‘qﬂ:) dﬂ: e .L'L'l (_ 'l&;@n—i‘utnﬂt) ds' (4 ¥ 8)
If u€ H*(Q) is the solution of (4.6), using Green’s formula and (4.8) on o, we get

J.n {dudv & (1 i 1") (gumn’umm — Uz, Vages— umc:'”mm:) }dﬂ:

s L BPuv do +qu- (vdu+ (1— :J)ﬁ,,,.) B8 — LF ((du) o+ (1 — )ty ) v ds. (4.9)
Notice -

u‘nt Sk (uﬂllf-l T uﬂ:ﬂt) mﬂ'ﬂ g u’#nﬂt (ﬂ'% S 'ﬂ&) -

Then taking the sum on both sides of (4.9) with respect 0 o €,, we get, for
'UE Vﬁ:

an(u, v) =(f, v)o— Tg_ L (vdu+ (1~ 2)up,) [v,,.]ds—F-Lm (v A+ (1—-::)'11,.,,,) p,ds.

(4.10)

Here we have used the boundary econdition (4.5) on ££2; and condition (4.1) on
082y and u=1,=0 on 90Q,. Since wC H*(Q), (4.10) shows

bl(u': V) = (f: 1})0'
Then, in line with the proof of Theorems 3.1, 3.2, we can prove
Theorem 4.3. If » and u, are the solutions of (4.6) and (4.7) regpectively,
w& H*(Q), k=38, and ¥V, satisfies assumptions 1), 2'), 8) and 4), we have an error
estimate:

[‘H-'— Uy, l a, s SOR*2 ‘ U | k+1,8-

The error estimates given by Theorems 4.2 and 4.3 are in terms of norm
|- a5, but one wusunally wants jﬁo have estimates in norms 043 ‘“1-14, efec. To
accomplish this purpose, we can use the duality argument and an interpolation
inequality for the derivatives given in [10]. Finally, for both simply supported
plates and plates with partial free boundary, we have

|6 — 20, A <XCF* | %2 11,0, (4.11)
HH_MUi,hQOhE_11H|k+1,n. (4.12)
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Combine Theorem 4.2, or 4.3 with (4.11) and (4.12). We get

[ — a0, A SOR* 0] 41,0 (4.18)
for both cases. Besides, as we mentioned in the remark of this section earlier, for
clamped plates, if |uls,, is nsed as the nmorm, estimates (4.11)—(4.13) are also
valid in the case.

b

§ 5. Some Examples

1) Adini’s rectangular element. It is easy to see from § 3 that V, is a weakly
discontinuous finite element space. It has been proved in [2] that for the tolerance
method, one hag

|u—ta] 0,n<<Oh | |3, 0.
But for the compensation method, we have

| | — a2, <OR? 1! ¢, 0.

2) Fraeijs de Veubeke’s triangular element. The degrees of freedom of the
element are funetion values on the fthree vertices and the baryoenter, and the
normaeal deriva?ivei on the two (Gaussian points of each side, ¥=3. [B] proved

|u—ta|2,s <OR(|6[5,0+2|%|4,0) |
for the tolerance method. The compensation meothod will have

|H_ﬁnlﬂ,nﬁ0hﬂ‘ﬂ 4,0

8) It was proved in [1] that using the penalty method for the complete 3
degree triangle element (the degrees of freedom are function values and two firgt—

order partial derivatives on each vertex and the function value on the barycenter),
the convergence order is O(h). But that of the compensation method will be O(A?).

This work Wa,slparhi_ally motivated by a talk of Prof. S8hi in February 1984, tfo
‘whom I would like 10 express my gratitude.
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