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Abstract

This paper presents sufficient conditions for optimality of the Linear Programming (LP) problem
$n the neighborhood of an optimal selution, and applies them to an interior point method for solving
the LP problem. We show ihat after a finite number of iterations, an exact solution to the L problem
is obtained by solving a linear system of equations under the asssumptions that the primal and dual
problems are both nondegenerate, and that the minimum value is bounded.If necessary, the dual solution
¢an also be found.

»

. § 1. Introduction

Ag is well-known, an optimal solution to the linear programming (LP)
problem is obtained at an extreme point of the feasible region under the assumptions
$hat the primal and dual problems are both nondegenerate, and that the minimum
value of the LP problem is bounded. Hence, as long as nonbasic variables can be
distinguished in the neighborhood of an optimal solution, an exach solution can be
found by solving a linear system of equations. Thig idea will be exploited by use of
an interior point method. |

This paper presents sufficient conditions for optimality of the LP problem and
applies them to an interior point method to obtain an exact solution. Firgt of all, a
gecond order estimate of the dual solutions snd Lagrange multipliers in the neigh-
borhood of an optimal solution are given for a standard form of the LP problem
ander ithe following assumptions: the primal and dual problems are both
nondegenerate, and the minimum value of the LP problem is bounded. Then a
vector of quasi—Lagrange multipliers (QLM) is introduc>d in order io set mp the
formula $0 estimate the value of Lagrange multipliers. The nonbasic variables will
be discarded based on the estimated value of the Lagrange multipliers, and an exact
solution of the LP problem will be achieved by solving a linear gystems of
equations. The dual solutions can also be obtained at the same time if necessary.

Section 2 shows how to set up the formula of the second—order estimate of the
dusl solution and Lagrange multiplier vector in the neighborhood of an optimal
golution. Section 3 describes the proposed interior point method for solving the LP
problem in terms of an affine transformation, and diseusses the method’s convergence.
Section 4 applies the results described in Sections 2 and 3 to the interior point
method, and shows that an exacl optimal solution is obtained in & finite number of
iterations.
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§ 2. Optimality Conditions

This section presents the sufficient conditions for optimality of the LP problem
in the neighborhood of an optimal solution. A second order estimation formula of
the dual solution and Lagrange multipliers is given under cerfain assumptions that
& siriotly interior feasible point in the neighborheod of an optimal solution.

First of all, we consider the following standard form of a linear program (LP):

Minimize z=c"z, (2.1)
Subject to Ax=5, (2.2)
=0, (2.3)

~where 4 i8 an m X n real matrix with rank m, m<n, b and ¢ are real vectors in B™
and R", respectively, and & is a real variable in B".

Suppose that the LP problem is feasible and nondegenerate. Assume that z is a

gtriotly interior feasible point satisfying (2. 2)—(2.8). Then, it can be expressed ag

E#m-p+5'“mu= t."f"‘!&, (2.4)
where a, is a bals'iﬁ feasible solution of the LP problem, and
- : mﬂ .
Ty = [ 0 ]: (2 . 5)
| U _
un[ B]=ﬂ5—-$u. | (2.6)
Un

Let N(x, 8) denote the Euclidean ball about z of radius 6, and D), Dy, D, D,
denote the nxXn, m Xm, m X m, and (n—m) X (n—m) diagonal matrices, containing
the components of z, a5, up, uy, respectively. Then

Di+Dy 0
D=[ . DJ' 2.7)

In order to desoribe the main resulis in thig seetion, we define veotors 5,
and v, by

0,,

y= (AD?AT) 14 D%, (2.8)
0p=De¢—DA"y, (2.9)
E- D-iﬂ’- (2 . 10)

The vector ¥ contains the quasi-Lagrange multipliers.

Theorem 2.1. Suppose that the LP problem is Jeasible and nondegenerate. Assume
that o” is 4is unique optimal solution, and Y 48 the corresponding dual optimal solution.
If © iz @ striotly interior feasible poing, such that 2 €N (3°, 8), then g 4s a second—order
estvmate of the dual solution y*, where 8 is a suffictently small positive scalar.

- Theorem 2.2. Supposs that the LP problem és feasible and nondegenerate. Assume
that =" 63 its unique optimal solution, and v* is the vector of Lagrange multipliers with
respect 1o . If x© és a strictly snterior Jeasible point, such that rC N (z*, 0), then the

vector v 48 a second order estimale of v°, where & és a sufficiently small positive scalar.
| To prove these theorems, we introduce several lemmas.

Lemma 2.3.  Suppose that the LP problem gs feasible and nondegenerate. Assume
$hat x ¢s a striotly interior feasible point satis fying (2.2)—(2.8). Then '
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AD3AT = BD, [IT+2D7 D, +Di2D3+ (BD,) *NDINT(DyB™) 1] (BDy)T, (2.11)

where D, Dy, Da Dy are diagonal matrices as described above, and B ts a basic mairis
oorresponding to a basic soluivon.
Proof. From the definitions, it follows that

Dy + Dy 0}
Dg |’

whore N is a (n—m) X m matrix with respect to the nonbasic variable uy. Honce
AD2AT = B(Dy+ Dy) "’BI'+ND§NT=B(D +2DyDy+D%) BT+ ND3NT,

From the assumption that the LP problem is nondegenerate, B, D and D, are
invertible matrices, and consequently

ADP AT = BD,[IT+2D71Dy+ D2 D3+ (BDy) "*NDINT (D, B")~*] (BD,)".

This completes the proof of the lemma.
Lemma 2.4. Using the same assumptions as ¢n Lemma 2.8, ¢t follows that

(BD4) 14 D% = (Dy+2Da+ DD}, Di*B-IND3). (2.13)
 Proof. From (2.12) and the definitions, the H.bﬂve ig straightforward:
(BD,)1AD = (BD,)*[B(D1+Dy), NDg] = (I+D:'Dy, DT'B*NDy), (2.14)

and hence

AD=(B, N) [ (2.12)

(BD,)AD*= (D,+2Dy+ D7D}, Di*B-INDJ).

This proved the lemma,
Lemma 2.5. Let |-| denote any matriz norm for which |I|=1. If |E|<1,
then (I+E) exisis, and
(I+E)1=I— K+ E?—

The proof of the lemma is given in [4].

Lemma 2.8. Suppose that the LE problem is feasible and nondegenerate. If wxp is
& basic feasible solution, & 4s a sufficiently small positive scalar, and T 48 a strictly
énterdor point, such that x € N (wg, 3), then

[I + QDI:[-D;: -+ DIEDE o (BD:L) —1N_D§NT (-Dj.BT) —1] =
~I —2D5*Dy+3D72Dj— (BD:) *NDIN” (D1B") 7, (2.15)

ewhere matrices B, Dy, Dy, Dy are as described above.
Proof. The assumptions of nondegeneracy and feasibility imply that B and D,
are invertible matrices. Thus, the left side of (2.15) is well defined. Let

E=2D7Dy+ D72D3+ (BD,) *NDINT(D,B") 1. (2.16)

Now we can choose a sufficiently small §>>0, such that for any z€ N (xs, 3), the
spectral radius of the matrix A is less than 1. It follows from Lemma 2.5 that

(I+E)2r=]—E+E— . | (2.17)
Substituting (2.16) into (2.17) yields
[I +2D1Ds+ Di2Di+ (BD) *NDIN*(DyB*) ]~
=T —2D7iD,— D72D2— (BD,) *NDINZT(D,B*)1+4D2D;+ 0(3%). (2.18)
If O(3%) is ignored, then (2.18) can be written in the form
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[I+2D71Dy+ D72D3+4- (BDy) *NDiN*(D,B%) ] 7%
~ I —2DD,+8D12D3— (BDy) *NIDiN* (D:B") 7,
which proves the lemma.

Now we prove Theorems 2.1 and 2.2.
The proof of Theorem 2.1 is as follows: Recall that 3 is defined by the

following:
g=(AD*AT) 1A D%. (2.19)
By the result of Lemma 2,3, we have that
AD?AT = BD, [I+2D71Dy+ Di2D2+ (BD,) XN D3NT (D.B%)*] (BDy)",
where now B is an m X m matrix corresponding to the optimal solution, and Dy, Dj,
D3 are as described above. Henoce

(AD?AT) 1= (D BT)2[I+2D7'Dy+ D7 Da+ (BD) N DANT(DB™)"11"*(BD;)™.
(2.20)
Subgtituting (2.20) into (2.19) gives
| y=(D,B") " [I+2D;Dy+ Dy2D3+ (BDy) 7N DINT(D,BT)"*]1(BD,) *AD%.

. (2.21)

It follows from (2.13) that (2.21) can be rewritten in the form
g= (D,B*) *[I+2D7*Dy+ D72D3
4+ (BD,) *NDINT(D.B")"*]2(Dy+2D,+D7'D3, DI'B'N DHe. (2.22)

From the assumption that & is a sufficiently small positive scalar, such thai
rC N (2", ), the result of Lemma 2.6 holds. So substituting (2.15) into (2.22)

gives
g= (D BTY"1[D, — (BD,) - NDIN*(D?)~*—-0(8*), D’'B™*N D34+0(5%]e. (2.28)
By definition, ¢f = (¢3, oy). Thus, it is straightforward to establish that
g = (D.B?)"[Dio5— (BDy) *ND3N*(B") *op+Di' BTN Dicy+0(8%)]
= (B") Yoz — Di?BND3[ (cLB~IN)T —oy] +0(5%). (2.24)
If the O(8®%) term in (2.24) is ignored, then (2.24) can be written in the form
y= (65B 1) T+ (BY)*Dy*B*NDj[ex—o0(cz B N) ] =y + (BT)~*D7*B~iN Dicy,
(2.25)
where ¢y =cy— (¢IBIN)T, "= (5B 1T, Thus, y is in fact a second-order estimaie
of the dual solution #".

This completes the proof of Theorem 2.1.
The proof of Theorem 2.2 is as follows: From definition (2.9)

0p= Dc— DA"y. (2.26)
By the assumption of nondegeneracy and the fact that z is a sirictly interior
feagible point, it follows from definition (2.10) that
p=D"c,=0— ATy. (2.27)
Since & is a sufficiently ‘small positive scalar, and z € N (2%, 3), the result of Theorem
2.1 holds. Thus

y=~ (¢SB)T4 (B*)~*D7*B~1N Dicx. (2.28)
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There is no loss of generality in writing # in ths form

= Cp .BT - |
= — 5 2.29
. [ﬂﬂjl [N T]y ( )
Substituting (2.28) into (2.29), we obtain
_ Tes] [ I " 0 T2B-1N Dicy E
o~ — . DB AN DIy =|_- [— o
s LN] _(B“lN)T] (ea+Ds 303) [ cﬂ] [(B‘iﬂ)TDIEB’iNDEGN_

Hence
vz +0(57),
Thus, » is a second order estimate of the vector of Lagrange multipliers Tl
This completes the proof of Theorem 2.2.
Using analysis similar to that in Theorems 2.1 and 2.2, it is straightforward to

show that the conelusions of these two theorems can be generalized to the case where
z i in the neighborhood of the optimal solution, but is not a feasible point.

§ 3. Algorithm and Convergence

This seotion desefibes an interior point method for solving the LP problem, and
its convergence.

Suppose that z is a strictly interior feasible point. Then an afline fransforma-
tion and its inverse can be defined ag follows:

o =D e, | | (B.l)
o=Dz. : (3.2)

The LP problem is transformed into the following linear programming problem in
z'--Space

Minimize z=c¢"Da’, (3.3)
Subject to 4Dz’ =b, | (8.4)
z'=0, | (3.5)

where D is a diagonal mairix containing the components of z.

Obviously, from the definition of D, the point z in #—space is mapped into the
point = (1, 1, +--, 1) in &—space. So, it is easy o take a large step away from - the
point e t0 & new point in a—space. The new point is transformed back into the
@-space, and an iterative point is obtained. To guaraniee that the iterative point is
well defined, it is necessary 10 have an additional assumption that the LP problem
satisfies the condition F. | |

Definition. The LP problem satisfies the condition F &f it ds feasible, amd for
any feasible point z, the matrie AD?AT isof full rank, where D is a diagonal mairiz
containing components of .

From the definition, it is easy 1o see that if the feasible region § of the LF
problem is bounded, then the condition I is equivalent to nondegeneracy. If, on the
other hand, § is unbounded, the condition F implies that for any ray direction v of
S the matrix ADIA® is of full rank, where D, is a diagonal matrix containing
components of ».

As desoribed above, algorithm A oreates a sequence of points &', #® .. as
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follows.
Algorithm A.
k:=0. Given &', an inilial starting point.
(1) Detiins |
Dy=diag (2, zi?, -, 27), | (8.6)
Ay=AD,. (8.7)
(2) Compute the vector ¢ and ifs norm [efP)a by
0g? = [I— AE (Andi) 7 Ax] Do (38.8)
and _
| lo®1 4 —'\/ (e)7 (657) 4 3.9
Go to the next step.
(3) Normalize o7 |
P E . | (3.10)

TeP]a
Go to the next step.
(4) Determine the largest step which can be taken, and genera.ta a new point:

1

;o A = =, (3.11)
where |
ge=Max [ p;"], , (3.12)
and lei
g R+L) ¥ a'.l;,.D {ll} (3 : 13)

where o€ (0, 1). k: k+1, and go to step (1}.

‘¥t is olear that the bulk of the computational work at each iteration is from
step (2), which ensures the feasibility of the new point,

Concerning the convergence of algorithm A, we have the followmg results:

Theorem 3.1. Suppose that the LP problem satisfies the condition F. If the
minimum value of the LP problem is bounded, then the sequence o generated by
algorithm A converges to an optimal solution of the LP problem.

Theorem 3.2. Suppose that the LY problem satisfies the condition F. 1f the
minsmum value of the LP problem is unbounded, then there ewists a veotor p<0, such
that the sequence p™ defined by (3.10) converges to p.

The proofs of Theorems 3.1 and 3.2 are given in [7].

§ 4. An Exact Solution of the LP Problem

Thig section applies the results of Secticns 2 and 3 to a modified algorithm A in
order to obtain an exact solution of the L.FP problem. To show thig, the results related
{0 Sections 2 and 3 are restated as follows.

Theorem 4.1. Suppose that the LP problem saiisfies the condition F. Assume that
@* bs 4ts undque optimal solution, and that the sequence & genorated by algorithm A
converges to z". Then

lim 5[]5} =1,

koo
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where y* is the dual optimal solution, and y® is de ﬁw&d by (2.8) with respect to D,
It is straightforward o prove this result from Theorems 2.1 and 3.1,

Theorem 4.2. With the same asswmptions as ¢n Theorem 4.1,
lim p® =y,

k-— o0
where v* t8 @ vector of Lagrange multipliers with respect fo &, and ™ is defined by
(2.10) with respect to Dy,
The assertion of the theorem is an immediate consequence of Theorems 2.2 and

8.1.
Lot 7® and o denote the vectors within the QLM of basic and nonbagio

variableg, respectively. Then a corollary follows from Theorem 4.2.
Corollary 4.3. With the same assumptions ag in Theorem 4.2, fhere exists a
sufficiently small 8>>0, and an integer k,>>0, such that for all £>>k,

Max | v | <8 (4.1)

Min o> 8. (4.2)
This conolusion shows a very important fact: the resuli of the corollary can be
used for a stopping ru;'le in some kind of iterative algorithm, including interior

point methods. .
Now in order to obtain an exact solutlon t0 the LP problem, we present the

modified algorithm A’ as follows:

and

Algorithm A’.
k:=0. Given &9, an initial starting point.
(1) Define
D,=diag («{°, #§?, -, 237),
-A-k = A.Dk. | (4 . 3)
(2) Compute the vectors ¢i° and »™
e = [I— Af (A3 47) 7 Ax] Dye, (4.4)
and _ |
p® = Dle®. (4.5)

If there is a subset B=[iy, ¢, ***, m]. such that o | <e, 4,€8, and ]y >s,
5, & N— B, where N=[1, 2, ---, n], then let B=[ay, a,, *-*, &, 1, 4#E B, and solve the
linear system of equations

Bz*=b. (4.6)

" is the optimal solution of the LP problem. If no such 8 exigts, go to the next step,
(8) Normalize ¢y -
G{H)

) '
P o o (4.7)

If
pPLe, H=1, 2, o, m, (4.8)

then the minimum value of the LP problem is unbounded, sfop. Otherwise, go to

the nex? step.
(4) Determine the largest step which can be taken and generate a new point

g s (4.9)

g%
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where

qr=Max [ p; "’] 3
and let

Z®HD = 53 _ g0 Dy o™, (4.10)

where a € (0, 1), k £+41, and go to step (1).

It follows from algorithm A', and Corollary 4.8, that an exact solufion of the
LP problem can be achieved in a finite number of iterations.

Theorem 4.4. Suppose that the LP problem satisfies the condition F. Assume ils
mingmum value is bounded, and the optimal solution 2" is unique. Then z" can be
obtained by algorithm A’ in a finste number of iterations. '

' Numeriecal tests have shown that the fotal number of iterations is reduced by
using algorithm A’ ingtead of algorithm A. It follows from Theorem 2.2 that the
reduced number of iterations depends on the value of the optimal solution.
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