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§ 0. Introduction

The bisection method is a well-known method for the numerical solution of a
gingle nonlinear equation. This method is effective and simple in finding the real
root of a single nonlinear equation, and only requires that the function be
continuous. Therefore it has a wide range of applications. This paper intends to
extend thig method to the case of nonlinear systems. Although not all nonlincar
gystems can be golved by the bisection method, there does exist some class of
nonlinear systems of equations which can be solved by the bisection method. And
this class of systems of equations can be obfained by approximating partial
differential equations uging the finite element or difference method. For some
classes of nonlinear systems the bisection method ig simple, safe and reliable™, By
“safe and reliable” is meant that the desired solution can always be found (in the
sence of global convergencs).

The paper i8 built up as follows.

In the first section some definitions and notations are given. Section 2 describes
the bisection method and gives its algorithm and its error estimate. Finally this
method is applied to the minimal surface problem and some numerical results are

given,

§ 1. Definition and Notation

We consider the following nonlinear system of equations
Fx=0, (1.1)
where
Sf1(z) 1
» Je (@) | %s

&= 5 s

-

fn() D
zc D >0
Recall that the natural partial ordering on R* is defined by z<y (x<y), for any

* Received May 28, 1984.
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@, y € R" if and only if 2, <y, (@,<<9), =1, 2,
Definition 1. The mapping F: DCR"-—}R“ 08 §sotone (on D) of for any
w, y €D, a<y, ¢mplies that Fx<<Fy. An isolone mapping F is strictly dsoions ¢f ot

follows from <y, for any o, y €D, that Fe<Fy. L.
Definition 2. The mapping F: DS R—>R™ 43 antitone (on D) éf far any
¥, y€ D, a<<y, implies that Fz=Fy. An antitone mapping F 48 stmcﬂy antitone of G

follows from x<y, for any o, y €D, that Fa>Fy.
Definition 3%. A mapping F: B*—>R" is diagonally isotone ¢f, for any ¢ C ",

the n funcitons
Uy R=>RL, () =fi(z+ite"), ¢=1,2, (1.2)
are isotone, where ¢ are uwz.t vectors. The funciion F 48 strictly d@mgﬂmmﬂy ¢sotone of,
for any 2 € B, Yy (6=1, 2, «--, n) are siricily isotone.
Definition 4. A mapping F: R'—R" is off-diagonally aniitone of, for any
z€ H", t}w functions
Py BA—>R, oy (B) =fle+te)), é+4, 4, j=1,2, -, n (1.3):,_

are antitone.

P § 2. Bisection Method

In Fig. 1, assuming ¢@;(2{®) <0, ¢:(#*) >0, we first define a sequence of
intervals:

IP =@, @is),

Vi where

g T a4 - ()
!k d -lk Eiy' = 5 3 j=1’.~2 s Ty, mm' e (2.1}
S 7/ _ |
: : Clontinue this process until
m{k}+mffﬂ}
Pig. 1 @: () @ ( — - )}0. (2.2)
Lot m, be the first index for ¢@;(2f’) <0, and set
ﬂ:gk;?r; _'ﬂ?[k'linj
| (%) (i) -
(a:f"’), zy 43“1*’ )= I =1. (2.8)
Analogously, a sequence of intervals
B = (i1, ),
where
{k} (k)
y%ﬂ S ;_y 2 j=l.= 2: "rey y%}: ma:gk}l (2*4)'
can be defined unitil
ygrr.] y(k}
By (L ), 2.5
Let n, be the first index for ¢, (¥ij’) >0, and set '

(%} (E+1)

Yo, =i 7,
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(B, ) - R~ R, (2.6

Furthermore, we set I{® -+ B{® = L.
Theorem A. Let F: DCRN-——)-RN FeOo (D), be an oﬁ'—mgﬂmﬂy antitone and,

stricily diagonally isotons mapping. Asswme that there exist poinis z°, o° € R such that
Oy ?®, (o, y>cD, FoO<O<Fy™. (2.7}
Then the ssquences starting from «© and y'® respectively are well ‘defined and the
seguences {o°} in (2.8) and {y*} in (2.6) hawe the properiues
o® 1, y® L y" a8 koo

weth
0 < Qy(m Fp® = _Fy = (), _
Proof. We only give the proof for the Ga.usﬂ—Seldal iteration (1 2) ; that for

the Jacobi iteration (1.3) is analogous.
By induction hypothesis, suppose that for some k>0 and ¢=>1

BV P<YP <y, FaP <0< Fy™, | (2.8)
PP LIFOLSYFHIYP, =1, 2, oo, 61, (2.9)

where for 4=1 the set of j'- satisfying (2.9) is empty. Obviously (2.8} and (2.9)
hold for kD,__fErf—;l. By off-diagonal antitonicity, it follows that equations

‘Pi(s) “’fi(m:l]ﬂ.-}'l; "',-affff, S, wfﬂ.- My mﬁ): | (2-10)
e®) =i, o, B4, 8, s, -, VR @Ay
satisly o | |
h@) <p(®), Vs€Di (Diai, ¥7). (2.12)
Evidently |
i (2 <o (&) < f (2% <O £+ (@) < i ’) <o (U™). (2.18)

By the continuity and strict isotonicity of ¢u(s) and @,(s), there exist mnique Y -
and z( satisfying
() =0=pi(@®),
s <P <yP<y®,
where #{¥ <4{® is a consequence of (2.12).
We have -
YOy D =y — | RE, | >3 = 20 D m g | T3, | 2, (2.14)

where | B%, | =0 and |I®,|>0 are the distances of intervals R, Iil;, respectively.
Tt is obvious that |R{, |>0 and, |I¥,|>0, and because of the structure of the
algorithm, R®X), =1, =0 holds only when fi(#{") =f(®) =0. (2. 14) shows that
(2.9) holds for ¢=1, 2, «--, n, that is

mﬁ)gm{k—}l}ﬁy(h-ﬁl}gy@);
The off-diagonal antitonicity leads 10
Fi(ﬁ?{k-l-n) QF{ (a"":f-'-1 mfii; ‘-'l’i+1 ml’-f-:'up iy m}) =P (miﬁ.l) <0,
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The last inequality is due to the structure of the algorithm.
Similarly, we have

F(gF Y F (5, e, o1, Y o, e, 9020, 61,2, 0, m

This completes the induction and hence the proof of (2.8).
As monotone and bounded sequences, {:1:“"3'} and {¢{”} have the limits #; and y;

satisfying o -Qy Moreover, leot
mﬁh}n IL n,__ a(k}ﬂ IRﬁw

@G- G-

O0<t<wP<l, Vk,i, 0<LT<ao<1, Vk, i,

where o®, o®#0 because [If,]|#0(|I{,|=0 only for fi(z")=/F (8 =0) and

wi®, m"“’?%—- because functions @, (&), P () are strictly monoione funetions.

Therefore, we have

]Jma:”‘?=11m ——{—-(:.1:*“‘”‘”I “‘3‘)+11ma:””=m d=1, 2, ««s, m,

k=soe l'.'l.h
k-bm {m ==E.l’ﬂ fk) (y(lﬁlj Uﬂ)) -I—].Il_'l] yf")my“ '3-“1, 2: Tre, W

Consequently £'z" =Fy =( follows from the continuity of F. By a rather formal
notation the algorithm can be described in the following procedure.

Procedurs BIS (N, z, y, 8, f); integer N; array =, y, f; value 8

comment N: number of equations, dimension of space

z: input z{”, output z;

y: input ¥®, output ¢;

f: function of the equation to be solved
a: desired accuracy

begin integer k; array i, B, U, BR;
for k: =1 step 1 do

begin integer ¢; O=>l=> R=3ll=>RR;
for 4=1 step 1 until ¥ do
begin integer 4;
w[8]=>a; y[é]l=>b;
for J =1 step 1 do

If @;(#)@; (‘H-b )<0 then begm( ﬂ';b )-»I[é-]; 03

2
(6+b)
2

else begin 1[4] i [4];

2
(@ b)
2

x[4]=a; y[]=>b;

==> ) E]:’l.d

1061 +U 6] =>N[6];

=»2"[3]; end
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Ee o= s r i S

for J =1 step 1 do
1f ¢i(b)¢;(a;b ){O then begin (m-}'b " b)::bR[.f‘,];

2
(ﬂ_; b) =g end

else begin (‘“;b)-..y*[m . RR[5]4 (‘“2‘ D) s BRIE] end

R[i]4- RR[i]=RR[];

end:
end; o*[¢]=>2[4]; ¢ [é]=2y[4];
* If length 23[@] +R[4]<e then stop else
&

end;
Now we show
Lemma 1,
e oniP o :
(5 o) = (12 ) P — o) 2:15)

Proof. It is not difficult to show that
of? (29 —1) + 4

k)
@y =

- =
w_ Y@ -1+
Yis’ 57 .

Therefore for j=m,; and j'=n;, we have
ay e 1)

m !
LRLLS | 2m E#] 2

(k) Fon® __ (%)
o= T LT

After rearrangement, we get

L) Lx#
R+1) _ pp ket D] o [/ _ 0] = f 1 i 0) _ g0
[y"‘ m“ ] SE ['y-iw, miﬂ-l (yi m{ L

k) i

Lemmas 2.

PP 2 )(1__'2"" -} 2™ )_”(1_ 2% 4 2™ )Cygﬂ)_migﬂ))_

2":1],*,"1:” ?F_T?_.I.mﬁl"'l] 2.:}!]1 +m": )

(yl:lﬁi) e msk+1}) - (1
(2.16)
Proof. Follows immediately from l.emma 1. |

Evidently we have a decreasing sequence of bounded, closed, non-empty sets
94 RO IV 4+ RV ee DIF 4 BV e DIV 4+ BV,

Using Contor’s intersection theorem, we have ﬂﬂli")—l—RE’“ = [z;, ¥¢]. In reality, we

get an inferval version of the iterafive method. a*¥**=a*N K (¥}, where K is an
operator of bisection, and #” ig an interval vector. The solution of (1.1) in X° lies
in K (X9, and therefore in X'=X°1 K (X°) also. When every side of K(X°) is
shorter than any side of X°, then the solution of (1.1) is unique in X% |
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§ 3. Application and Numerical Computation
In the domain
G_: <+ <, o§>71=2=_(1+ VD), g, y;a}

we congider the following equation of minimal

surface | |
(14 12) e — 2atgtihzy+ (L) thyy =0
(3.1)
and the boundary condition
uw(z, y) =c, for 22+ 7% == a® cosh’ %,'
(3.2)
— u (s, y) =og for w?+y?=a’cosh? °2,
t=0]log {%4;/(%)2___ 1 } 5, | 47 |
» P L2 01
JL'ig. 3 u(z, 0) ﬁlﬂg{ﬂ—kJ(ﬂ) 1}fora.cosh = L,
L3 - Y Yy _ 01 L2
< ¢ cosh —> u(0, v) wlog{a \/({;) l.} for a cosh > < gy<<acosh = The

solution satisfying equation (3.1) and boundary condition (3.2) is
& 2 2 i
- u(e, y)==wArshf~\/ (—m—-) —t—(ﬂ-) —1} Ve, y € L.

@ L

Multiplying (8.1) by an integral factor (v 1Hu2+u2)~* results in the variational
problem

Tt =jﬂ IR & dody. (3.8)
The domain @ is approximated by the quadrilateral olement
L
Gn=p Qh Q; quadrangle. ' (3 -‘.5:)
=1 :

Wo use continuous and piecewise linear functions 0 solve approximﬁtely the problem
(3.3):

CEED‘IL]; (Pi) »

[M=

p=Ug= % (Wiedos— Ugg) =

1
[

i

(3.5)

>

q: ”%?'-1}; (@i-fﬂ—-uﬁ) =§ a§®un (Py) «

Yot P,(i=1, +o», M(M+1, -+, N)) Dbe the set of interior (boundary) vertices.
Using the method of discretization [3], we obfain a digcretized system
approximating (3 .3) | N
S A(@)v=b(2), (3.6)
~ where » A(v) = H*D(Hu+ Bvy) H, (3.7)
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-1 -1 1 o o o0 0 1
i o ©0 ©o o0 o0 ©0 O
o 0O O o o0 o o0 O
o 1 ©o o 0O o ©0 O
Hfwal 0 O O 1 0 0 0 0}
O o0 -1 -1 0 1 o0 o
|
t o o0 O o0 -1 -1 0 O
\ o 0 ©0 o0 1 0 -1 1}
o O o ©o0o o o 1 0
Ti.f’d:l -
01/ dy O
']'g/da
7o/
D(Hv+Bv,) — 2/ da
Ta/ds
'I's/da
O T&;/di
‘1'4/3&
™ 0 0 O 0 O 0
di dy
_Toog o0 I 9 0 0 0
dy dy
Aa —i Tl
5 O 0 0 O 7 0 0
O o o o J» _f2 g 0
ds d,
{ o0 © o0 0 o o .Ts. I3
ds ds
s Ts
O O 0 0 o0 - R 0
o o0 0O o0 0 g o0 ~It
dy
T4 Ty
T+ 0 0 0o 0 G 0 —~1%
da dy

For the point 1 of Fig. 4, we obtain the following difference equation

T4 T4 Ti 1 T2

TR B ) — gy U — U =0,
& i i ¥ o R T e
where di=~/ 1+;g?;—l—gf,‘ r;-———%ﬂf Thus we have a formuls

W1 Ast+ Us—zj Ao+ Uigayda+ TP By ol 7Y (—24;—Ag— Ag) =

203

(3.3)

3.9
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$-1, irj""l : |'.+1_, Wi-rlh
§+1 I5 g} i+1

1 ~F
Ay=— {1'1‘ 5l (Ugts = W) 2+ (ggyn — uyy) 2} <0,

i+1,5

; 1
Ag= — {1'1"";3_5 (g —2%s15) *+ (Upzgpr — Ugoas) 2} <0, (3.12)

1 | E
,j)—1 : al -Aa - — {l“‘l“ '}:ﬂ"(uﬂﬂ—i —%u-:t) H"l" (ui! e uﬂ—l) E} <0'
Fig. 4

Now we calculaje the elements of the functional matrix

% =(—24; - A;— As) -+ (i1 — ;) i F (Wiezg —yy) 04y

au‘!j Euﬁ
YL
+ [ty — ) + (e — ) 1922
. J
= 2+ (Eﬁ“gu)’ | 1+92—11 + | 1-+p5 -1

NA+pi+gi)? N O piutdiy) N QA prat @)’

3f A A, 1-+ Piﬂj-—l —Pus 19551
= A, . e
au,;;_i i (2e5—q — Mif) Dy _m"é‘“ﬁ/ (1+25, ) )8

of ra 04, o 1+ Q’;E_” — Di—15G 114

Oy _13 "By ~ Apiaytgig)?

'@i{ﬁ = Ay + (Usgsg — ig) iﬁl F (tage1 — tag) ;i; - —“\%ﬁi{———"ﬁ%g
-;95; {+1 = A+ (U1 — ) 3iji: (i — W) :Lﬂiii = —\/lh(jfégfgf) 8
Bui.iﬂi ~ (m'ﬁ-m-j) 3‘1?11‘-&111' v (1;§::fi;i—1j)

B~ ) By R

Obviously ;{H

The inequality 14¢% —249i>>0, pug;>0, in the above domain & holds™,
Thus we get a functional matrix, which is an L-matrix. Furthermore, it is an
irreducible diagonally dominant matrix. Of course, such a functional matrix is an
M-~matrix.

- Lemma 3%%, Let F: DCR—R" be continuously differentiable on the closed
rectangle B and let the funcitonal matric be an L-matric (M—matriz) for each s €D,

Then ¥ is a contimuous, off-diagonally antitone and strictly diagonally isotone
Junciion (M—funciton) on D.
~ In another domain

@ 0<o<1, 0<y<1, (3.18).

we consider the same equation (3.1) of minimal surface with boundary condition
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e — i A — L o P ¥ i v U

u(z, 0)=—Incosz, VYecl0, 1], |
w(z, 1) =In(cosl) —Incosw, Vaec[O, 1],
u(0, y) =In(cosy), Vy€ [0, 1], _
u(l, ¥) =1n(cosy) —In(eosl), Vy&l[O, 171,
The solution setisfying equation (3.1) and boundary condition (3.2) is
u(@, ¥) =1In(cosy) —In(cosa), Vo, yEG.
We again calculate the elements of the functional matrix. In this case

of of . af of of
—L_ >0 0 0 = 0 0
31&1}’ ‘Mﬁ—:l.‘g;:Ir 3%&-1.’!'5;"r 3%{.;.1:%’ "

bk of —o 2f so.

(3.14)

Thus we get & functional matrix which is not an M-matrix. Nevertheless, we
can gtill apply the bisection method. This means the condition in Theorem A that
“F ig off-diagonally antitone and strictly diagonally isotone” is too strong. We
will show this by an interesting example from (3.1) with boundary condition
(3.12). First woe select the starting vectors o, ¥y, We know that the maximum
and minimom of the giemaﬁded function are always assumed on the boundary. So
we may select the starting vectors a‘®
and y©@ from the boundary condition
' (3.2). As u(m, ¥) =In(cosy) —In(cosa)
o, yC [0, 1] and cosz, cosy & [0.5405;
1], then In (cos ), In (cosy) € [—0.6156
0]. We can obtain the minimal value

w(0, 1) =In(cos 1) —In(cos0)
=1n(0.5408= —0.61b66
and the maximal value
Cu(d, 0) = —u(0, 1) =0.6106.
Therefore, for the starting vectors o0
¥, we can select
@ (—0.62, —0.62, <+, —0.62)%,
| /O = (0.62, 0.62, -, 0.62)%.
Qbviously (3.138) satisfies condition (2.7).
Superimpoge square grid sover the unit square with mesh size A= 1/(N+1) for
gome positive integer V. ' |
We caleulate the solution of (8.1), (8.2) with the difference scheme (3.11)
obtained by quadrilateral element. In our example we set N=3. Thus, we get a.
gystem of 9 nonlinear equations. |
For the starting vectors 29, ¥, we have
o'
0.615626574  0.584045529  0.485042334  0.303226600 0
0.812399924 —0.62 ~—0.62 —{.62 — 0. 803226650
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0.130684240 —0.62 —~0.62 ~0.62 -0.485042834
0.031580988 —0.62 —0.62 ~0.62 ~ 0. 584045529
0.0 —0.081580988 —0.130684240 —0.812399924 —0.615626574
TARE
0.615626567T4  0.584045529  0.485042384  0.803226650 0
0.312399924 +0.62 +0. 62 +0.62 —0. 803226650
0.130584240 ~+0.62 +0.62 +0. 62 — 0. 485049334
0.031580988 +0.62 +0.62 +0.62 —0.584045529
0.0 - —0.0381580988 —0.180684240 —0.812300924 —0.615626574
After 45 iterations we obtain the following result: |
m(‘.la'ill=.y(dﬁ}: .
0.615626674  0.584045529  0.485042834  0.803226650 0
0.812899924  0.285198711  0.185495978 —0.000000208 —0.303226650
0.130584240  0.100986592 —0.000000846 —0.185496509 —0.485042384
0.081580988 —0.000000212 —0.100937128 —0,285194099 —0.584045529
0.0 .—0.031580988 —0.130584240 —0.812899924 —0.615626574

- The convergence of this method is slow, ag in the case of a single nonlinear
equation, but the method is simple. Moreover, we can obtain its global convergence
and error egtimate. |

Acknowledgment., The author is graieful to professor W. Tornig for his
guidance during the progress of this work.
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